نوع مقاله : مقاله پژوهشی لاتین

نویسنده

فردوسی مشهد

چکیده

در این تحقیق از سیستم تلفیقی عصبی-فازی (ANFIS) و الگوریتم ژنتیک-شبکه عصبی (GA-ANN) برای مدل‌سازی سینتیک خشک شدن ورقه‌های پاپایا به‌وسیله هوای داغ استفاده گردید. ورودی‌های سیستم مدل‌سازی شامل سه ورودی زمان خشک شدن (320-0 دقیقه)، دمای خشک شدن (40، 50 و 60 درجه سانتی‌گراد) و ضخامت ورقه‌ها (3، 5 و 7 میلی‌متر) و خروجی سیستم شامل نسبت رطوبتی (MR) بود. در طراحی سیستم مدل‌سازی ANFIS از توابع عضویت مثلثی و 27 قانون استفاده گردید. نتایج نشان داد که داده‌های پیش‌بینی‌شده توسط سیستم ANFIS دارای تطبیق بالایی با نتایج آزمایشگاهی بود (R2= 0.9967, RMSE= 0.0161). همچنین سیستم مدل‌سازی GA-ANN بهینه‌شده، شامل 7 نرون در لایه مخفی، با دقت بالایی میزان رطوبت را پیش‌بینی نمود (R2= 0.9936, RMSE= 0.0220). ضریب انتشار مؤثر ورقه‌های پاپایا در بازه دمایی مورد آزمایش بین 6.93 ×10-10 و 1.50 ×10-09 مترمربع بر ثانیه تعیین شد. همچنین مقدار به‌دست آمده برای انرژی فعال‌سازی (32.5 کیلوژول بر مول) به‌خوبی تأثیر دمای خشک کردن بر روی ضریب انتشار را نشان داد.

کلیدواژه‌ها

Afzal, T., Abe, T. 1998. Diffusion in potato during far infrared radiation drying. Journal of food engineering. 37, 353-365.
Aghdam, S., Yousefi, A., Mohebbi, M., Razavi, S., Orooji, A., Akbarzadeh-Totonchi, M. 2015. Modeling for drying kinetics of papaya fruit using fuzzy logic table look-up scheme. International Food Research Journal. 22.
Akgun, N.A., Doymaz, I. 2005. Modelling of olive cake thin-layer drying process. Journal of Food Engineering. 68, 455-461.
Al-Mahasneh, M., Aljarrah, M., Rababah, T., Alu’datt, M. 2016. Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology. Food Engineering Reviews. 8, 351-366.
Bahramparvar, M., Salehi, F., Razavi, S. 2014. Predicting total acceptance of ice cream using artificial neural network. Journal of Food Processing and Preservation. 38, 1080-1088.
Bala, B., Ashraf, M., Uddin, M., Janjai, S. 2005. Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. Journal of Food Process Engineering. 28, 552-566.
Crank, J. 1975. The Mathematics of Diffusion: 2d Ed. Clarendon Press.
Demirtas, C., Ayhan, T., Kaygusuz, K. 1998. Drying behaviour of hazelnuts. Journal of the Science of Food and Agriculture. 76, 559-564.
Diamante, L., Munro, P. 1991. Mathematical modelling of hot air drying of sweet potato slices. International journal of food science & technology. 26, 99-109.
Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices. Journal of food engineering. 79, 243-248.
Erenturk, K., Erenturk, S., Tabil, L.G. 2004. A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network. Computers and Electronics in Agriculture. 45, 71-90.
Falade, K.O., Solademi, O.J. 2010. Modelling of air drying of fresh and blanched sweet potato slices. International journal of food science & technology. 45, 278-288.
Fathi, M., Mohebbi, M., Razavi, S.M. 2011. Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food and bioprocess technology. 4, 1519-1526.
Fernandes, F.A., Rodrigues, S., Gaspareto, O.C., Oliveira, E.L. 2006. Optimization of osmotic dehydration of papaya followed by air-drying. Food Research International. 39, 492-498.
Haghi, A., Amanifard, N. 2008. Analysis of heat and mass transfer during microwave drying of food products. Brazilian Journal of Chemical Engineering. 25, 491-501.
Irani, R., Nasimi, R. 2011. Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. Expert Systems with Applications. 38, 9862-9866.
Izadifar, M., Mowla, D. 2003. Simulation of a cross-flow continuous fluidized bed dryer for paddy rice. Journal of Food Engineering. 58, 325-329.
Kaleemullah, S., Kailappan, R. 2005. Drying kinetics of red chillies in a rotary dryer. Biosystems Engineering. 92, 15-23.
Kaymak‐Ertekin, F. 2002. Drying and rehydrating kinetics of green and red peppers. Journal of Food Science. 67, 168-175.
Lenart, A. 1996. Osmo-convective drying of fruits and vegetables: technology and application. Drying technology. 14, 391-413.
Liu, Y.A., Baughman, D.R. 1995. Neural Networks in Bioprocessing and Chemical Engineering. Academic Press, Inc., San Diego.
Midilli, A., Kucuk, H., Yapar, Z. 2002. A new model for single-layer drying. Drying technology. 20, 1503-1513.
Mohebbi, M., Shahidi, F., Fathi, M., Ehtiati, A., Noshad, M. 2011. Prediction of moisture content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural network. Food and Bioproducts Processing. 89, 362-366.
Park, K.J., Vohnikova, Z., Brod, F.P.R. 2002. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering. 51, 193-199.
Prakash, O., Kumar, A. 2014. ANFIS modelling of a natural convection greenhouse drying system for jaggery: an experimental validation. International Journal of Sustainable Energy. 33, 316-335.
Sacilik, K., Keskin, R., Elicin, A.K. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of food Engineering. 73, 231-238.
Sadin, R., Chegini, G.-R., Sadin, H. 2014. The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat and Mass Transfer. 50, 501-507.
Salehi, F., Kashaninejad, M., MAHOONAK, A., Ziaiifar, A. 2017. Drying of Button Mushroom by Infrared-Hot Air System. Iranian Jounal of Food Science and Technology. 13, 151-159.
Simal, S., Mulet, A., Tarrazo, J., Rossello, C. 1996. Drying models for green peas. Food Chemistry. 55, 121-128.
Tao, Y., Li, Y., Zhou, R., Chu, D.-T., Su, L., Han, Y., Zhou, J. 2016. Neuro-fuzzy modeling to predict physicochemical and microbiological parameters of partially dried cherry tomato during storage: effects on water activity, temperature and storage time. Journal of food science and technology. 53, 3685-3694.
Tripathy, P., Kumar, S. 2009. Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences. 48, 1452-1459.
Vergara, F., Amezaga, E., Barcenas, M., Welti, J. 1997. Analysis of the drying processes of osmotically dehydrated apple using the characteristic curve model. Drying Technology. 15, 949-963.
Yolmeh, M., Najafi, M.B.H., Salehi, F. 2014. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis. Microbial pathogenesis. 67, 36-40.
Yousefi, A., Asadi, V., Nassiri, S.M., Niakousari, M., Aghdam, S.K. 2013a. Comparison of mathematical and neural network models in the estimation of papaya fruit moisture content. The Philippine Agricultural Scientist. 95.
Yousefi, A., Niakousari, M., Moradi, M. 2013b. Microwave assisted hot air drying of papaya (Carica papaya L.) pretreated in osmotic solution. African Journal of Agricultural Research. 8, 3229-3235.
Yousefi, A., Razavi, S.M. 2017. Modeling of glucose release from native and modified wheat starch gels during in vitro gastrointestinal digestion using artificial intelligence methods. International Journal of Biological Macromolecules. 97, 752-760.
Yuzgec, U., Becerikli, Y., Turker, M. 2009. Comparison of different modeling concepts for drying process of baker’s yeast. IEEE Transactions on Neural Networks. 19, 1231-1242.
Ziaforoughi, A., Yousefi, A.R., Razavi, S. 2016. A Comparative Modeling Study of Quince Infrared Drying and Evaluation of Quality Parameters. International Journal of Food Engineering. 12, 901-910.
CAPTCHA Image