Document Type : Research Article

Authors

1 Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Iran.

2 Associate Prof., Dept. of Horticultural Science, University of Mohaghegh Ardabili

3 Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Iran.

Abstract

Introduction: Peach fruit is considered to be a part of the fragrance fruits in terms of respiratory behavior, which is why it quickly becomes corrosive at normal temperature. Shelf life of peach is limited because of weight loss due to water loss and physiological abnormalities such as browning and tissue alteration. The Aloe Vera gel is a polyester coating and has an elastic property that is easily soluble in water and covers the entire area around the product to a similar extent. This gel acts as a protective layer on the product and protects the cells below the protective layer against mechanical damage and also prevents the loss of juices. Polyamines are a group of low-molecular-weight, naturally-occurring compounds with linear nitrogen groups found in almost all organisms and play a role in a wide range of physiological processes in plants, animals and microorganisms.  The purpose of this experiment was to investigate the effect of Putrescine and Aloe Vera gel on the prolongation of the post-harvest life of peach fruit.
 
Materials and methods: Peach fruits (Prunus persica L.), the redtop cultivar at commercial maturing stage, when 80-50% of the fruits were painted, Harvested from the gardens of Moghan Agro Industry & Industry Co., located in Pars Abad city and after transferring to the laboratory, coating treatments as factorial based on completely randomized design with coating treatments in four levels of Putrescine (0, 2, 4, and 6 milli molar) and Aloe-vera gel treatments in four levels (0%, 15%, 30%, and 45%) in three time periods (15, 30 and 45 days) and three replicates with total of 144 experimental units was carried out. The fruits at -1° C and humidity of 95-90% were kept in cold storage. The pH of the juice were measured by a Digital pH Meter, soluble solids at room temperature was read by hand-made refractometer on a graded column. To measure total acid, titration was performed using 0.1% sodium hydroxide solution and the results were expressed in grams of malic acid in 100 grams of fresh weight. Measurement of vitamin C was done by titration with Decolor phenol Indole Phenol and Meta phosphoric acid and its amount expressed as mg of ascorbic acid in 100 grams of sample. The total phenol content was measured by the Folin- Sioculto method. The acetone method was used to measure carotenoid. Flavonoids were measured by acid ethanol method. The data of this study were analyzed using SPSS (9.1.3) and comparison of mean of treatments with LSD-test at probability level of 5%. Charts were also drawn using Microsoft Excel software.
 
Results & Discussion: Based on the analysis of variance table, the triple effects of Putrescine, aloe vera and time treatments in all indices had a significant effect at 1% probability level. Analysis of variance showed the lowest pH at combined treatment of 6 mM putrescine and 30% Aloe-vera gel. Also, the most titratable acidity was observed at combined treatment of 6 mM putrescine and 15% Aloe-vera gel and the most total soluble solids was observed at combined treatment of 2 mM and 45% Aloe-vera gel. Highest levels of vitamin C were observed at combined treatment of different levels of Aloe-vera gels at 6 mM putrescine. The most carotenoid levels was for combined treatment of 6 mM putrescine and 30% Aloe-vera gel and the most flavonoids was for combined treatments of 6 mM putrescine and 45% Aloe-vera gel. The pH peach juice increased during storage, due to the breakdown and decomposition of organic acids in the respiration process. The organic acids during storage are low due to their consumption during respiration and have a downward trend. The amount of soluble solids in fragrance fruits, such as peaches, increases during storage, when using putrescin significantly reduced the changes in soluble solids. The treatment of polyamide fruits slowly reduces the amount of total soluble solids that can be delayed in the production of ethylene and the ripening of fruit. It seems that the effect of polyamide treatments on their ability to maintain acidic conditions and the total acid content of the fruit extract, is related to their ability to compete with ethylene and delay in the ripening process. The amount of phenol over time has been increased. Phenol content of fruits and vegetables can be reduced or increased, which depends on storage conditions. With increasing maintenance period, the activity of PEL enzymes increases in different stages of harvesting, so that it has the highest amount at the time of commercial maturation. Based on the results of this study, it was observed that co-application of Putrescin coated treatments with aloe vera gel maintains biochemical parameters in terms of storage of peach fruit. Generally, the combination of 6 μM Putrescin and 30% Aloe Vera combination therapy had the best effect among other treatments in maintaining the traits in tomato fruit.

Keywords

  1. اصغری، ع.، زکایی، م.، خسروشاهی، م.ر.،۱۳۸۷، پلی آمین‌ها و علوم باغبانی، انتشارات دانشگاه بوعلی، همدان، ص ۵۵.
  2. بالا پور، م.، عسگر پور، آ.، علی عسگری، م.،۱۳۹۳، اثر تیمارهای داشت و پس‌ازبرداشتاسیدسالیسیلیک و پوترسین بر برخی فاکتورهای کیفی میوه سیب رقم گرانی اسمیت، نشریه علوم باغبانی، جلد ۲۸، شماره ۴، صص ۴۸۶-۴۷۹.
  3. جلیلی مرندی، ر.، ۱۳۸۳، فیزیولوژی بعد از برداشت، چاپ سوم، انتشارات جهاد دانشگاهی ارومیه، ص ۲۷۳.
  4. جلیلی مرندی، ر.، ۱۳۹۱، فیزیولوژی بعد از برداشت، چاپ سوم، انتشارات جهاد دانشگاهی ارومیه، ص ۳۲۲.
  5. زاکری، م. ، ریاضی، ع. ، انوری، س. ، ۱۳۹۴، اثر پوترسین بر خصوصیات کمی و کیفی و عمر سیب رقم محلی بشاگرد، کنفرانس بین المللی کشاورزی، محیط زیست و توریسم، تبریز.
  6. زکایی خسروشاهی، م.ر.، اثنی عشری، م.، ۱۳۸۷، اثر کاربرد پوترسین بر عمر پس از برداشت و فیزیولوژی توت فرنگی، زردآلو، هلو و گیلاس، علوم و تکنولوژی کشاورزی و منابع طبیعی، دوره ۱۲، شماره ۴۵، صص ۲۲۸-۲۱۹.
  7. عصار، پ.، راحمی، م.، تقی پور، ل.، ۱۳۹۱، اثر تیمارهای پس‌ازبرداشت اسپرمیدین و پوترسین بر کیفیت انباری میوه کیوی رقم هایوارد (Actinidia Deliciosa L. Var. hayward)، نشریه علوم باغبانی ایران، دوره ۴۳، شماره ۳، صص ۳۳۶-۳۳۱.
  8. میدانی، ج.، هاشـمی دزفـولی ، س.ا.، ۱۳۷۶، فیزیولـوژی پس‌ازبرداشت،نشر آموزش کشاورزی.
  9. نصیرزاده، م.، ۱۳۸۹، اثر کاربرد پس از برداشت پلی آمین‌ها بر کاهش صدمه‌ی سرمایی، رسیدن و افزایش عمر قفسه‌ای گوجه فرنگی، پایان نامه‌ی ارشد دانشکده‌ی کشاورزی دانشگاه شیراز.
  10. نعمت اللهی، ا.، جعفری، ع.، باقری، ع.، اثر تنش خشکی و سالیسیلیک اسید روی رنگدانه های فتوسنتزی و جذب عناصر غذایی ارقام زراعی آفتابگردان(Helianthus annuus L.)،مجله اکوفیزیولوژی گیاهی، سال ۵، شماره ۱۲، صص ۵۱-۳۷.
  11. همدانی، م.، مرادی، ح.، قنبری، ع.، اثر زمان برداشت و عمر انبارمانی بر کیفیت میوه پرتقال خونی رقم مورو ( Citrus sinensis cv, Moro )، ۱۳۹۳،نشریه علوم باغبانی، جلد ۲۸، شماره ۲، صص ۲۵۹-۲۵۲.
  12. وحدت، ر.، فتوحی، ر.، قاسم نژاد، م.، ۱۳۸۸، اثرات ژل آلوئه‌ورا بر حفظ کیفیت میوه‌های توت فرنگی، ششمین کنگره‌ی علوم باغبانی ایران، دانشگاه گیلان.
  13. Choi, S; Chung, M, 2003, A Review on The relationship Between Aloe vera Component and Their biologic effects, Seminars in Integrative Medicine, 1: 53-62.
  14. Clive, L; Sze-Chung; Nicholson, R, 1998, Reduction of light-induced anthocyanin accumulation in inoculated anthocyanin accumulation in inoculated sorghum mesocotyls implication for a compensatory role in the defense response, Plant Physiology, 116:979-989.
  15. Ding, CK; Chachin, Y; Hamauzu, YU; Imahori, Y, 1998, Effects of storage temperatures on physiology and quality of loquat fruit, Postharvest Biology and Technology, 14: 309-315
  16. Fischman, ML; Levaj, B; Scorza, R; Gillespie D, 1993, Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage, Journal of the AmericanSociety for Horticultural Science, 118:343–349.
  17. Galston, A.W; Sawhney, R.K; 1990, Polyamines in plant physiology, Plant Physiology, 94:606-610.
  18. Ghasem nejad, M; Ghorbanali pour, R; Fatahi moghadam, J, 2011, Effect of harvesting time on antioxidant capacity and keeping quality of Actinidia deliciosa cv. Hayward fruit, Journal of Crops Improvement, Vol. 13, No. 1, Pages 55-64.
  19. Humadi, S.S; Istudor, V.I.O.R.I.C.A, 2008, Quantitative analysis of bio-active compound in Hibiscus sabdariffa L. Extracts, Note I Quantitative analysis of flavonoids, 699-707.
  20. Kakkar, R.K;nSawhney, V.K, 2002, Polyamine research in plants: a changing perspective, Physiolpgy Plant, 116: 281-292.
  21. Kalt, W, 2005, Effects of production and processing factors on major fruit and vegetable antioxidants, Food Sci, 70: 11-19.
  22. Kaur-Sawhney, R; Shih, L.M; Cegielska, T; Galston, A.W, 1982, Inhibition of protease activity by polyamines Relevance for control of leaf senescence, FEBS LETTERS, 145 (2):345-349.
  23. Leiting, V.A; Wicker, L, 1997, Inorganic cations and polyamines moderate pectinesterase activity, J. Food Sci, 62 (2):253-255.
  24. Leja M, Mareczek A, Ben J,2008, Antioxidant properties of two apple cultivars during long-term storage. Food Comp. Analy. 21: 396-401.
  25. Manganaris, GA; Vasilakakis, M; Diamantidis, M; Mignani, I, 2007, The effect of postharvest calcium application, quality attributes incidence of flesh browning and cellwall physicochemical aspects of peach fruits, FoodChem, 100:1985-1392.
  26. Martınez-Romero, D; Alburquerque, N; Valverde, JM; Guillen, F; Castillo, S; Valero, D; Serrano, M, 2005, Postharvest sweet cherry quality and safety maintenance by Aloe vera treatments: A new edible coating, Postharvest Biol and Tech, 39: 93-100.
  27. Martin-Tanguy, J, 1997, Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches, Physiology Plant, 100: 675-688.
  28. Ponappa, T; Scheerens, J.C; Miller, A.R, 1993, Vacuum infiltration of polyamines increases firmness of strawberry slices under various storage conditions, J. Food Sci, 58 (2):361-364.
  29. Ranganna, S, 1986, Handbook of analysis and quality control for fruit and vegetable products, Tata McGraw-Hill Education, 209-221.
  30. Rastogi, R; Davies, P. J; 1991, Polyamine metabolism in ripening tomato fruit II. Polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit, Plant physiology, 95:41-45.
  31. Saftner, R.A; Baldi, B.G, 1990, Polyamine levels and tomato fruit development: possible interaction with ethylene, Plant Physiology, 92:547-550.
  32. Saiprasad, G.V.S; Raghuveer, P. Khetarpal, S; Chandra, R, 2004, Effect of various polyamines on production of protocorm-like bodies in orchid-denarobium esonia, Scientia Horticulturae, 100: 161-168.
  33. Serrano, M; Martinez-Romero, D; Guillen, F; Valero, D, 2003, Effects of exogenous putrescine on improving shelf life of four plum cultivar, Postharvest Biol. Technol, 30:259-271.
  34. Tassoni, A; Buuren, M.V; Franceschetti, M; Fornale, S; Bagni, N, 2003, Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development, Plant Physiology Biochem, 38: 383-393.
  35. Valero, D; Martinez-Romero, D; Serrano, M, 2002, The role of polyamines in the improvement of the shelf life of fruit, Trends Food Science Technology, 13:228-234.
  36. Valero, D; Martinez-Romero, D; Serrano, M; Riquelme, F, 1998, Postharvest gibberellin and heat treatment effects on polyamines, abscisic acid and firmness in Lemons, J. Food Sci, 63(4):611-615.
  37. Valverde, JM; Valero, D; Martinez-Romero, D; Guillen, F; Castillo, S; Serrano, M, 2005, Novel edible coating based on Aloe vera gel to maintain table grape quality and safety, Agricultural and Food Chemistry, 53: 7807-7813.
  38. Wang, C. Y; Conway, W.S; Abbott, J.A; Kramer, G.F; Sams, C.E, 1993, Postharvest infiltration of polyamines and calcium influences ethylene production and texture changes in ‘Golden Delicious’ apples J. Amer, Soc. Hort. Sci, 118:801-806.
  39. Waterhouse, AL, 2002, Determination of total phenolic. In: Worsted, R.E. (Ed.), Current Protocols in Food Analytical Chemistry, John Wiley and Sons, New York, units I.1.1.1–I.1.1.8.
CAPTCHA Image