Document Type : Short Paper


1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

2 Department of Food Hygiene, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran.


Introduction: The peel of fruits, in particular, are an abundant source of natural compounds and contain the higher amount of phenolics compared to the edible portions. Ultrasound-assisted extraction (UAE) is an ideal extraction method capable of producing high quantities of bioactive compounds with a shorter extraction time. Probe and bath systems are the two most common ways of applying ultrasound waves to the sample. Probe sonicators are constantly in contact with the sample and make reproducibility and repeatability difficult. In addition, the risk of sample contamination and foam production is higher. Bath sonicators can act on a range of samples simultaneously and allow for higher reproducibility. Kiwifruit belongs to family Actinidiaceae and genus Actinidia. Kiwifruit is characterized by a high content of vitamin C and other useful compounds such as vitamin E, flavonoids, and minerals. Phenolic compounds present in Kiwifruit peel are catechin, epicatechin, chlorogenic acid, caffeic acid, coumaric acid, and rutin. Several studies have been done on the extraction of various plants with ultrasonic waves. Most of the research on the extraction of plant extracts by ultrasound-assisted under various conditions of parentage such as time, solvent, temperature, and intensity of the sound obtained matched with other traditional methods of extraction and different studies have shown that there was never study on the effects of ultrasound bath and probes under the same conditions (temperature, solvent, time and frequency) on obtained extract and comparison of both two methods has been done. The aim of this study was comparing the antioxidant activity of Kiwifruit peel extract (KPE) obtained by two extraction methods ultrasound bath and probe techniques in same conditions temperature, solvent, time and frequency.
Materials and Methods: Hayward Kiwifruit variety was purchased from gardens in Tonekabon City. The peels were dried in the shadow at 25-27˚C, and then they were finely ground in a laboratory grinder. The dried peels were pulverized and sieved through a 40-mesh sieve to obtain the powdered samples. The dry plant material was then packed in the plastic bag and stored in a freezer at -18˚ C. 10 g of Kiwifruit peel powder was extracted with 100 mL of a mixture of ethanol–water 80% (v/v) at two methods Ultrasound Bath Extraction by using a 25 kHz ultrasonic system (model Elma Sonic S30H, Germany), temperature (45°C), time (20 min) and Ultrasound Probe Extraction by using a 25 kHz ultrasonic system (model VCX 250, Sonics & Materials, Inc., USA), temperature (45°C), time (20 min), amplitude of 45% with a probe of 1 cm in diameter was used. After obtaining extracts, an efficiency of extraction, total phenolic and flavonoid compounds, scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and ferric reducing antioxidant power (FRAP) assay were measured and concentration of 0.1 mg/ml of synthetic antioxidant TBHQ was as the control sample. All data were reported as mean ± standard deviation of three replicates. The results were compared by analysis of variance (ANOVA) using SPSS for Windows [version 16]. Mean differences were significant for extraction efficiency, total phenolic and flavonoid compounds based on T-test (binary comparison) and other tests based on Duncan's test at 0.05. Charts were drawn with Microsoft Excel version 2016.
Discussion & Results: These results showed that the highest amount of phenolic compounds, flavonoids, extraction efficiency, and antioxidant activity were obtained in UPAE-KP. In both extraction methods, with increasing KPE concentration, DPPH free radicals scavenging and ferric reducing antioxidant power also increased. The concentration of 2 mg/ml UPAE-KP extracted the highest percentage of inhibition (94.11%) in all of the concentrations of the extracts in two methods. UPAE-KP at concentrations of 1.5 and 2 mg/ml and UBAE-KP at a concentration of 2 mg/ml showed better performance in scavenging free radicals than TBHQ. Among the extracts, IC50 UPAE-KP was 0.2±0.06 mg/ml which was significantly different from UBAE-KP (P<0.05). TBHQ at a concentration of 0.1 mg/ml (with a percentage of inhibition of 88.04±0.5) showed a better radical inhibitory activity than the low concentrations of Kiwifruit Peel extracts. UPAE-KP with a lower IC50 (0.09±0.07) showed more reducing antioxidant power than UBAE-KP. TBHQ at a concentration of 0.1 mg/ml (with an absorption rate of 304/1) had greater reducing antioxidant power than the Kiwifruit Peel extracts at all concentrations except the concentration of 2 mg/ml UPAE-KP. In this study, the extraction of KPE with both ultrasound methods was acceptable in terms of efficiency and antioxidant activity, with the difference that the probe superior to the ultrasound bath. Therefore, according to the results, KPE was competitive with TBHQ activity. KPE can be used as a useful source to provide natural antioxidant, and the probe compared with the ultrasound bath is a better way of extracting the KPE phenolic compounds.


  1. اﺣﻤﺪﯾﺎن ﮐﻮﭼﮑﺴﺮایی، م.، ﻧﯿﺎزﻣند، م.، ۱۳۹۵.، اﺳﺘﺨﺮاج ﺗﺮﮐﯿﺒﺎت ﻣﻮﺛﺮه ﮔﻠﺒﺮگ زﻋﻔﺮان ﺑﻪ ﮐﻤﮏ اﻣﻮاج ﻓﺮاﺻﻮت و ﺑﻬﯿﻨﻪ ﺳﺎزى ﺷﺮاﯾﻂ اﺳﺘﺨﺮاج آن.، ﻓﺼﻠﻨﺎﻣﻪ ﻓﻨﺎﻭﺭﯼ ﻫﺎﯼ ﻧﻮﻳﻦ ﻏﺬﺍﻳﯽ.، ﺳﺎﻝ ﭼﻬﺎﺭﻡ.، ﺷﻤﺎﺭﻩ ۱۳.، ﭘﺎﻳﻴﺰ ۱۳۹۵.، صفحه ۱۳۵-۱۲۱.
  2. آریان فر، ا.، شهیدی، ف.، کدخدایی، ر.، وریدی، م.، ۱۳۹۴، بررسی عوامل موثر بر استخراج پلی‌فنول‌ها و فعالیت آنتی-اکسیدانی چای سبز، نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد ۱۱، ،شماره ۴ ، مهر- آبان ۱۳۹۴، ص: ۲۹۵-۲۸۵.
  3. روحانی، ر.، عین افشار، س.، احمدزاده، ر.، ۱۳۹۴، استخراج ترکیبات آنتوسیانینی و آنتی اکسیدانی پرچم گل زعفران به کمک فناوری امواج فراصوت، نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد ۱۱، شماره ۲، تابستان ۱۳۹۴، ص:۱۷۰-۱۶۱.
  4. ﻗﺮﺑﺎنی، م.، اﺑﻮﻧﺠمی، م.، ﻗﺮﺑﺎنی جاوید، م.، عرب حسینی، ا.، ۱۳۹۶، ﺗﺄﺛﻴﺮ ﺷﺮاﻳﻂ ﻋﺼﺎره ﺧﻮاص ﮔﻴﺮی ﺑﺎ اﻣﻮاج ﻓﺮاﺻﻮت ﺑﺮ ﻋﻤﻠﻜﺮد و آﻧﺘﻲاﻛﺴﻴﺪاﻧﻲ ﻋﺼﺎره ﮔﻴﺎه رازﻳﺎنه Foeniculum vulg))، ﻋﻠﻮم و ﺻﻨﺎﻳﻊ ﻏﺬایی، شماره ۶۷، دوره ۱۴، شهریور ۱۳۹۶.
  5. محققی ثمرین، ا.، پورآذرنگ، ه.، الهامی راد، ا.، دزاشیبی، ز.، ۱۳۸۷، استخراج ترکیبات فنولیک پوست سیب زمینی راموس با دو روش اولتراسوند و پرکولاسیون و ارزیابی فعالیت آنتی‌اکسیدانی عصاره آن در روغن سویا، فصلنامه علوم و صنایع غذایی، دوره ۸، شماره ۱، بهار ۱۳۹۰.
  6. نصیریفر، ز.، صادقی ماهونک، ع.، کمالی، ف.، ۱۳۹۲، تاثیر شرایط عصاره‌گیری به کمک فراصوت بر میزان استخراج ترکیبات فنولی و فلاونوئیدی از میوه داغداغان (Celtis australis)، نشریه فرآوری و نگه‌داری مواد غذایی، جلد پنجم، شماره دوم: ۱۳۰-۱۱۵.
  7. Arabshahi-Delouee, S and Urooj A. 2007. Antioxidant properties of various solvent extracts of mulberry (morus indica L.) leaves, Food Chemistry 102(4): 1233-1240.
  8. Baghel, S.S., Shrivastava, N., Baghel, R.S., Agrawal, P., Rajput, S. 2012. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharmaceut Sci., 1, 146-160.
  9. Bendicho, C., and Lavilla, I. 2000. Ultrasound Extractions Universidad de Vigo, Facultad de Ciencias (QuO&mica), Vigo, Spain.
  10. Bidchol, A.M., Wilfred, A., Abhijna, P., Harish, R. 2011. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology 4(7), 1137-1143.
  11. Burin, V.B., Ferreira, N.E., Panceri, C.P., Bordignon-Luiz, M.T. 2014. Bioactive compounds and antioxidant activity of vitis vinifera and vitis labrusca prapes: Evaluation of different extraction methods. Microchemical Journal 114:155-163.
  12. Chen, M., Zhao, Yu.,sh. 2015. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chemistry., 172:543-550.
  13. Cai, Y,. Luo, Q., Sun, M., Corke, H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74: 2157 – 2184.
  14. Chirinos, R., Huaman, M., Betalleluz-Pallardel, I., Pedreschi, R., Campos, D. 2011. Characterisation of phenolic compunds of Inca muna (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chemistry., 128:711-716.
  15. Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. 2015. Optimization of microwaveassisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry., 166: 585-595.
  16. Da Porto, C., Porretto, E., Decorti, D. 2013. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics sonochemistry., 20(4), 1076-1080.
  17. Duh, P.D. 1999. Antioxidant activity of water extract of four Harng Jyur (Chrysanthemum morifolium Ramat) varieties in soybean oil emulsion. Food Chemistry., 66:471-476.
  18. Esmaeilzadeh Kenari, R., Mohsenzadeh, F., Raftani Amiri, Z. 2014. Antioxidant activity and total phenolic compound of Dezful sesame cake extracts obtained by classical and ultrasound assisted extraction methods, Food Science and Nutration., doi; 10.1002/fsn3.118.
  19. Farzaneh, V., and Carvalho, L.S. 2015. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crop. Prod. 65, 247–258.
  20. Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C., Angioni, A., Dessi, S., Marzouki, N., Cabras, P., 2008. Comparative analysis of polyphenolic profiles and antioxidant and antimicrobial activities of Tunisian pome fruit pulp and peel aqueous acetone extracts. J. Agric. Food Chem., 56, 1084–1090.
  21. Ghasemi, K., Ghasemi, Y., Ebrahimzadeh, M.A. 2009. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci., Vol.22, No.3, pp.277-281.
  22. Guimaraes, R., Barros, L., Barreira, J., Joao Sousa, M., Ana Carvalho, Ferreira, I. 2010. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology Volume 48, Issue 1, Pages 99–106.
  23. Goulas, V., Manganaris, G., 2012. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry., 131(1):39.
  24. Ince, A. E., Sahin, S. and Sumnu, S. G. 2012. Extraction of phenolic compounds extraction of phenolic compounds from wheat bran. Food Chemistry., 106: pp. 804-810.
  25. Iwasawa, H., Morita, E.,Yuis, s.,Yamazaki, M . 2011. Anti-oxidant effects of kiwi fruit in vitro and in vivo,Bio pharm bull., 34(1):128-34.
  26. Jeong, S.M., Kim, S.Y., Kim, D.R., Jo,S.C., Nam, K.C., Ahn, D.U., and Lee, S.C. 2004. Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. J. Agric. Food Chem., 52, 3389−339.
  27. Jimenez, A., Beltran, G., Uceda, M. 2007. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. J UltrasonSonochem. Sep;14(6):725-31.
  28. Karim, A., Alothman, M., Rajeev Bhat, A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry 115: 785–788.
  29. Kim, J.G., Beppu, K., Kataoka, I. 2009. Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Scientia Horticulturae., 120: 551–554.
  30. Koda, T., Kuroda, Y., Imai, H. 2008. Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutrition Research., 28(9), 629-634.
  31. Leontowicz, M., Leontowicz, H., Drzewiecki, J., Jastrzebski, Z., Haruenkit, R., and Poovarodoms. 2007. Two exotic fruits positively affect rat’s plasma composition. Food Chem., 102:192-200.
  32. Lim Y.Y., Quah, E.P.L. 2006. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chemistry.
  33. Luque-Garcia, J. L., and Luque de Castro, M. D. 2003. Where is microwave based analytical treatment for solid sample pretreatment going? Trends Anal. Chemistry,22: pp. 90–99.
  34. Middha, S.K., Usha, K., and Pande, V. 2013. A Review on Antihyperglycemic and Antihepatoprotective Activity of Eco-Friendly Punica granatum Peel Waste. Hindawi Publishing Corporation., Volume 2013, Article ID 656172, 10 pages.
  35. Nabavi, S.M., Nabavi, S.F., and Ebrahimzadeh, M.A. 2012. Free radical scavenging and antioxidant activities of Dorema aitchisonii. J. Food Drug Anal., 20(1), 34–40.
  36. Oroian, M., Escriche, I. 2015. Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International., 74:10-36.
  37. Pan, Y. M., Zhang, X. P., Waang, H. S., Liang, Y., Zhu, J. C., Li, H. Y., Zhang, Z., and Wu, Q. M. 2007. Antioxidant pgenolic of ethanolic extract Polygonum caspidatum and application in peanut oil. Food Chemistry 105: 1518-1524.
  38. Pico, Y. 2013. Ultrasound-assisted extraction for food and environmental samples. Trends in Analytical Chemistry, Vol. 43.
  39. Pratt, D. E., Watts, B. M., 1964. The antioxidant activity of vagetables extracts I. flavone aglycones. J Food Sci, 29: 27-33.
  40. Pourmorad, F,. . Hosseinimehr, S. J., Shahabimajd, , N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology Vol. 5 (11), pp. 1142-1145.
  41. Rumbaoa, O., Cornago, F., and Geronimo, M. 2009. Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis 22: 546–550.
  42. Sanchez-Moreno, C., Larrauri, J. A. and SauraCalixto, F. 1999. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International. 32:407–412.
  43. Shi, J., Nawaz, H., Pohorly, J. and Mittal, G. 2005. Extraction of Polyphenolics from Plant Material for Functional Foods–Engineering and Technology. Food Reviews International., 21:p. 1–12.
  44. Shotipruk, A., Kaufman, B. and Wang, Y. 2001. Feasibility study of repeated harvesting of menthol from biologically viable mentha xpiperata using ultrasonic extraction. Biotechnol Progress, 17(5): 924-928.
  45. Silva, E. M., Souza, J. N. S., Rogez, H., Rees, J. F., Larondelle, Y. 2006. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry. 101: 1012-1018.
  46. Tavarini, S., Degl ‘ Innocenti, E., Remorini, D., Massai, R., and Guidil. 2008. Antioxidant capacity, ascorbic asid, total phenols and carotenoids changes during harvest and after storage of Hayward Kiwi fruit. Food Chem. 107:282-288.
  47. Vasco, C., Ruales, J., and Kamal-Eldin, A. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry 111: 816–823.
  48. Vajic, U.J., Grujic-Milanovic, J., Zivkovic, J., Savikin, K., Godevac, D., Miloradovic, Z., Bugarski, B., Mihailovic-Stanojevic, N. 2015. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Industrial Crops and Products., 74: 912-917.
  49. Weisburger, J. 1999. Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem. Toxicol., 37(9), 943-948.
  50. Wolfe, K., Wu, X., Liu, R.H.. 2003. Antioxidant activity of apple peels. J. Agric. Food Chem., 51, 609–614.