Document Type : Research Article


1 Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.


Introduction: One of the new methods for improving the mechanical properties of bioplastics is the production of blending based bioplastics. Recent studies show that proteins, in combination with starch, form a strong network of hydrogen bonds and intermolecular interactions that resulted stable 3-D materials. The big problem in the commercialization of blending based bioplastics is the lack of industrial machinery for the continuous production of bioplastics with the direct use of biopolymers. Industrial production of bioplastics is accompanied by increasing heat along with applying the pressure. It is necessary to know the kinetics of thermal degradation of bioplastics to study thermal behavior at different temperatures in order to design bioplastics processing devices and molding machines, software modeling of processes, mass and energy equilibrium, and optimizing energy consumption in the production process along with improving the thermal properties of the bioplastics.
 Materials and methods: In this study, the dynamics thermal decomposition of bioplastics prepared from a mixture of potato whole flour-gelatin and glycerol with a control sample consisting of potato whole flour and glycerol was investigated and compared. The gelatin was extracted from chicken feet using chemical methods. In this research, two isoconversional models including Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) models were considered. Using each of these models, thermal decomposition kinetic parameters were calculated for bioplastic samples.
 Result and discussion: The results showed that the maximum activation energy of the mixed bioplastics determined 162 and 150 kJ/mol by FWO method at the conversion ratio of 0.9 and 0.5 respectively, while it was 217 kJ/mol at the ratio of 0.6 for control bioplastics. The amounts of kinetic parameters calculated in this study, were able to determine the thermal behavior at different temperatures and the thermal decomposition process. Also, it can help to redesign and optimize the methods of molding and shaping of potato-gelatin based bioplastics by the use of existing machinery in the industry.


اولیایی، س.ا.، مؤیدى، ع. ا. و قنبرزاده، ب.، 1396، اثر مونت‌موریلونیت (MMT) بر مشخصه‌هاى ساختارى، نورى و حرارتى فیلم‌هاى نانوبیوکامپوزیتى نشاسته سیب‌زمینى تولید شده در ایران. فصلنامه فناوری‌های نوین غذایی، 15، 105-89.
داورپناه، ز.، کرامت، ج.، همدمی، ن.، شاهدی، م. و بهزاد، ط.، 1393، خواص فیلم میکروکامپوزیت زئین حاوى مونت‌موریلونیت اصلاح شده. فصلنامه علوم و فناوری های نوین غذایی، 5، 56- 49.
عمرانی فرد، ح.، غضنفری مقدم، ا.، شمسی، م. و عطائی، ا.، 1391، تعیین برخی خواص مکانیکی و بررسی سینتیکی تخریب گرمایی زیست‌پلاستیک‌های تهیه شده از سلولوز کاه و آرد گندم. مجله علوم و تکنولوژی پلیمر، 25، 74- 65.
Akahira, T. & Sunose, T., 1971, Method of determining activation deterioration constant of electrical insulating materials. J. Res. Rep. Chiba. Inst. Technol., 16, 22–31.
Avella, M., Errico, M.E., Rimedio, R. & Sadocco, P., 2002, Preparation of biodegradable polyesters/high‐amylose‐starch composites by reactive blending and their characterization. J. Appl. Polym. Sci., 83, 14321442.
Chuaynukul, K., Prodpran, T. & Benjakul, S., 2014, Preparation, thermal properties and characteristics of gelatin molding compound resin. J. Research Journal of Chemical and Environmental Sciences, 2, 19.
Chuaynukul, K., Prodpran, T. &Benjakul, S., 2015, Properties of thermo-compression molded bovine and fish gelatin films as influenced by resin preparation condition. J. International Food Research, 22, 10951102.
Das, P. & Tiwari, P., 2017, Thermal degradation kinetics of plastics and model selection. J. Thermochimica Acta, 654, 191–202.
Das, S., Routray, M. & Nayak, P., 2008, Spectral, thermal, and mechanical properties of furfural and formaldehyde cross-linked soy protein concentrate: a comparativestudy. J. Polym. Plast Technol. Eng., 47, 576–582.
Dhyani, V., Kumar, J. & Bhaskar, T., 2017, Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. J. Bioresource Technology, 245, 1122–1129.
Doyle, C.D., 1962, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci., 6, 639–642.
Flynn, J.H., 1997, The temperature integral-its use and abuse. J. Thermochim. Acta., 300, 83–92.
Hashim, P., MohdRidzwan, M.S. & Bakar, J., 2014, Isolation and characterization of collagen from
chicken feet. J. International Scholarly and Scientific Research and Innovation, 8, 250254.
Irwandi, J., Faridayanti, S., Mohamer, E.S.M., Hamzah, M.S., Torla, H.H. & Man, Y.B.C., 2009, Extraction and characterization of gelatin from different marine fish species in Malaysia. J. International Food Research, 16, 381389.
Jerez, A., Partal, P., Martinez, I., Gallegos, C. & Guerrero, A., 2007, Protein-based bioplastics: Effect of thermo-mechanical processing. J. Rheologica. Acta., 46, 711–720.
Kim, S.H., 2010, Investigation of thermodynamic parameters in the thermal decomposition of plastic waste. J. Waste Lube Oil Comp, 44, 5313–5317.
Liang, Y., Cheng, B., Si, Y., Cao, D., Jiang, H., Han, G. & Liu, X., 2014, Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis. J. Renewable Energy, 68, 111–117.
Murray, P. & White, J., 1955, Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. J. Trans. Br. Ceram. Soc., 54, 204–238.
Ozawa, T., 1965, A new method of analyzing thermogravimetric data. J. Bull. Chem. Soc. Jpn. 38, 1881–1886.
Pommet, M., Redl, A., Morel, M.H., Domenek, S. & Guilbert, S., 2003, Thermoplastic processesing of protein-based bioplastics: Chemical engineering aspects of mixing, extrusion and hot molding. J. Macromolecular Symposia, 197, 207–218.
Shlensky, O.F., Vaynsteyn, E.F. & Matyukhin, A.A., 1988, Dynamic thermal decomposition of linear polymers and its study by thermoanalytical methods. J. Therm. Anal., 34, 645–655.
Sun, S., Song, Y. & Zheng, Q., 2007, Morphologies and properties of thermo-moulded biodegradable plastics based on glycerol-plasticized wheat gluten. J. Food Hydrocol., 21, 1005–10013.
Swain, S., Rao, K. & Nayak, P., 2005, Biodegragable polymers. Part II. Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J. Therm. Anal. Calorim. 79, 33–38.
Uttaravalli, A.N. & Dinda, S., 2017, Kinetics of thermal decomposition of ketonic resins. J. Materials Today Communications, 12, 88–94.
Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C. & Sbirrazzuoli, N., 2011, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. J. Thermochim. Acta., 520, 1–19.
Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N. & Suñol, J.J., 2014, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. J. Thermochim. Acta., 590, 1–23.
Widyasari, R. & Hashim, S., 2014, Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. J. Food and Applied Bioscience, 2, 8597.
Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y., 2008, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. J. Polymer Degradation and Stability, 93, 9098.
Yuan, X., He, T., Cao, H. & Yuan, Q., 2017, Cattle manure pyrolysis: kinetic and thermodynamic analysis with isoconversional methods. J. Renewable Energy, 107, 489496.