Document Type : Full Research Paper


Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.


Introduction: Milk dessert is a product that contains at least 50% the fresh cow milk or reconstituted milk, which is made with supplementary additives such as flavors, sweeteners, thickeners, and stabilizers, after undergoing heat treatment such as pasteurization or sterilization. Spirulina platensis is a multi-cellular microalgae and a green-blue filament that is a rich source of protein, essential amino acids, essential fatty acids, vitamins, minerals and pigments. Today, as a substitute for sucrose, non-caloric sweeteners are used, which in a small amount make too much sweetness, but they are not absorbed by the body. Of these, stevia with higher sweetness than sucrose (300 to 400 times), less calories and lower glycemia index, is a good herbal sweetener to replace sucrose.
Materials and methods: Factor A contains the percentage of algae Spirulina platensis (alternative to milk powder) at 5 levels (0-2 % of the final formula), factor B contains the percentage of stevia replacement with sucrose at 5 levels (0-100), to achieve optimal pudding production formula were selected. Optimization of formula was performed based on the parameters of syneresis, viscosity, hardness and cohesiveness by Response Surface Method (central composite design, α=2 with 6 central points). The results were analyzed using SPSS 20 software and the comparison of the means was done by LSD at 5% level and the charts were drawn by Excel software.
Results & Discussion
Generally, due to the increase of molecular connections between the chains and the outflow of water from the structure is created. According to the results of Table 3, the independent effect of stevia replacement with sugar, the interaction effect of Spirulina platensis and stevia replacement, and the quadratic effect of each of the independent variables on the Syneresis factor were significant (P <0.05). The rate of syneresis of the samples at higher levels of stevia replacement was reduced by decreasing the percentage of Spirulina platensis replacement, and at lower levels of stevia replacement, with the decrease in the percentage of Spirulina platensis replacement, the amount of syneresis significantly increased. Water holding capacity is linked to the ability of proteins, fats, and dietary fiber to maintain water inside the product structure. Because Spirulina platensis has high levels of protein, dietary fiber and fat, its presence in the formulation of frozen desserts has a significant effect on reducing the product's syneresis.
As shown in Table 3, the independent effect of Spirulina platensis  replacement and stevia replacement, the interaction effect of Spirulina platensis  and stevia replacement, the quadratic effect of Spirulina platensis  and stevia replacement on the amount of viscosity was significant (P <0.05 ). The level of viscosity at lower levels of stevia replacement decreased with a decreasing percentage of Spirulina platensis replacement, and at the higher levels of stevia replacement, reducing Spirulina platensis replacement percentage was no significant effect on the viscosity (Fig. 2). In general, the presence of Spirulina platensis in the pudding formulation increased its viscosity, which could be due to the Spirulina platensis protein structure and intercellular interactions. Spirulina with high water absorption reduces water mobility. Also, the presence of fiber and hydroxyl compounds in the structure of this fine algae has a significant effect on the viscosity of the product.
 Hardness and cohesiveness
Replacement of Spirulina platensis and Stevia in pudding formulations did not have a significant effect on the hardness and cohesiveness of texture. While the interaction effect of Spirulina platensis and Stevia replacement on the hardness and cohesiveness of the pudding samples was significant (P<0.001). The quadratic effect of Spirulina platensis and stevia replacement on the amount of hardness and cohesiveness of texture was significant (P <0.05). At lower levels of stevia replacement, by increasing the Spirulina platensis  replacement percentage, the hardness of the samples first increased and then decreased, while at higher levels of stevia replacement, with increasing Spirulina platensis  replacement percentage, the hardness of the samples first decreased and then increased. Large particles of Spirulina platensis can cause unconnectedness and network connectivity and ultimately create a more sophisticated structure. In fact, Spirulina platensis protein molecules, having a hydrophilic property, compete with other molecules to bind to water molecules, which results in a weaker and more unstable gel structure. On the other hand, tissue hardness is largely dependent on dry matter, the amount and type of protein in the sample. High levels of protein cause cross-linking in the gel network and, ultimately, a rigid and dense structure. But it should be noted that the amount of sample fat plays an important role in the product's texture. Since Spirulina platensis, in addition to protein, also has significant amounts of fat, the intervention of the fatty molecules of this small algae can be effective in forming a weaker gel network and producing soft texture in the product. Finally, optimal formula 1 (2 % Spirulina platensis and 95% Stevia replacement) and optimal formula 2 (0.1% Spirulina platensis and 50% Stevia replacement) were predicted.


اسلامی مشکنانی، ع.، فدایی نوغانی، و.، خسروی دارانی، ک. و مزینانی، ص.، 1393، بررسی اثر افزودن پودر ریز جلبک بر برخی از ویژگیهای فیزیکوشیمیایی و حسی دوغ پروبیوتیک حاوی پودر نعناع، فصلنامه فناوریهای نوین غذایی، 2، 70-59.
رسولی، ف.، برنجی، ش. و شهاب لواسانی، ع.، 1396، بهینه‌سازی فرمولاسیون بستنی سنتی ایرانی حاوی ریز جلبک اسپیرولینا پلاتنسیس با استفاده از روش سطح پاسخ، علوم غذایی و تغذیه، 14، 28-15.
شوریده، م.، تسلیمی، ا.، عزیزی، م.ح.، محمدیفر، م.ا. و مشایخ، م.، 1389، تأثیر کاربرد D- تاگاتوز، اینولین و استویا به‌عنوان جایگزین ساکارز بر بعضی ویژگیهای فیزیکی، شیمیایی، رئولوژیکی و حسی شکلات تیره، مجله علوم تغذیه و صنایع غذایی ایران، ۵، 38-29.
شهبازیزاده، س.، مقدم، م.، احمدیان، ف.و رمضانیپور، م.، 1393، بررسی امکان استفاده از پودر اسپیرولینا در تولید بستنی، دومین همایش کشوری سلامت شیر از تولید تا مصرف و اهمیت تغذیه، تهران، معاونت غذا و دارو دانشگاه علوم پزشکی ایران، 3-4 اسفند.
غیبی، ن.، رفتنی امیری، ز. و کسائی، م.ر.، 1396، بررسی اثر استویا و اینولین بر روی ساختار، خصوصیات فیزیکوشیمیایی و حسی بستنی رژیمی، فصلنامه علوم و صنایع غذایی ایران، 14، 14-1.
محمدی الستی، ف.، فدائی نوغانی، و. و خسروی دارانی، ک.، 1395، تأثیر غلظتهای مختلف جلبک اسپیرولینا پلاتنسیس بر برخی ویژگیهای فیزیکوشیمیایی و حسی ماست اسفناج پروبیوتیک، نشریه پژوهشهای صنایع غذایی، 26، 143-127.
مهرابی، ز. و گلی، م.، 1397، تولید دسر شیری بر پایهی فرمولاسیون عسل خرما، نشاسته ذرت و ژلاتین با کمک روش سطح پاسخ(RSM)، فصلنامه علوم تغذیه و صنایع غذایی ایران، 13، 3، 125-115.
میانی سریزدی، س.، اعلمی، م.، امینیفر، م.، غفارپور، م.، دستمالچی، ف.، مقصودلو، ی. و محمدی، م.، 1395، بررسی خصوصیات فیزیکوشیمیایی، بافتی و حسی دسر لبنی فرا سودمند دارای مالت جو بدون پوشینه، مهندسی بیوسیستم ایران، 47، 3، 509-501.
نجفی، س. و صالحیفر، م.، 1395، بهینه‌سازی تولید مافین کم کالری با استفاده از شیرین کننده طبیعی استویا و مالتودکسترین، نشریه پژوهش های صنایع غذایی، 26، 4، 724-715.
Alamri, M.S., Mohamed, A.A. & Hussain, S., 2014, High-fibr date pits pudding: formulation, processing and textural properties, European Food Research and Technology, 239, 736-755.
Amerinasab, A., Labbafi, M., Mouavi, M. & Khdayian, F., 2015, Development of novel yoghurt based on date liquid suger: physicochemical and sensory characterization, LWT-Food Science and Technology, 52, 6583-6590.
Ares, G., Baixauli, R., Sanz, T., Varela, P. & Salvador, A., 2009, new functional fibre in milk pudding: effect on sensory properties and consumers' acceptability, LWT-Food Science and Technology, 42, 710-716.
Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M.A., Fendri, I., Attia, H. & Abdelkafi, S., 2017, Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage, LWT-Food Science and Technology, 84, 323-330.
Batista, A.P., Ristiana Nunes, M.C., Fradinho, P., Gouveia, L., Sabel Sousa, I., Raymundo, A. & Franco, J.M., 2012, Novel foods with microalgal ingredients– Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels, Journal of Food Engineering, 110, 182–189.
Belay, A., Ota, Y., Miyakawa, K. & Shimamatsu, H., 1993, Current knowledge on potential health benefits of Spirulina, Journal of Applied Phycology, 5, 235-241.
Chronakis, I.S., 2001, Gelation of edible blue-green algae protein isolates (Spirulina platensis): Thermal transitions, rheological properties and molecular forces involved, Bioresource Technology, 77, 19-24.
Costell, E., Peyrolon, M. & Duran, L., 2000, Influence of texture and type of hydrocolloid on perception of basic tastes in carrageenan and gellan gels, Food Science and Technology International, 6(6), 495-499.
Emmons, D., Beckett, D. & Larmond, E., 1972, Physical properties and storage stability of milk based puddings made with various starches and stabilizers, Canadian Institute of food science and technology Journal, 5(2), 72-76.
Falquet, J., 2005, The nutritional aspects of Spirulina, Antenna Technologies, 1-5.
Louis, J.L., Balestrieri, M.L. & Napoli, C., 2007, Nutrition, physical activity and cardiovascular disease, Cardiovascular Research, 73, 326-340.
Malik, P., 2011, Utilization of spirulina powder for enrichment of ice cream and yoghurt. MSc thesis, Bidar University, Bidar, Karnataka.
O'Brien-Nabors, L., 2011, Alternative Sweeteners, Marcel Dekker, New York (USA), 587 p.
Paseephol, T., Small, D.M. & Sherkt, F., 2008, Rheology and texture of set yogurt as affected by inulin addition, Journal of Texture Studies, 39(6), 617-634.
Philip Aidoo, R., Ohene Afoakwa, E. & Dewettinck, K., 2014, Rheological properties, melting behaviours and physical quality characteristics of sugar-free chocolates processed using inulin/ polydextrose bulking mixtures sweetened with stevia and thaumatin extracts, LWT-Food Science and Technology, 62(1), 592-597.
Saha, D., Bhattacharya, S., 2010, Characteristics of gellan gum based food gel, Journal of Texture Studies, 41, 459-471.
Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E.& Vernon-Carter, E.J, 2004, Microstructure and texture of yogurt as influenced by fat replacers, International Dairy Journal, 14(2), 151-159.
Saniah, K., Sharifah, M., 2012, the application of Stevia as sugar substitute in carbonated drinks using response surface methodology, Journal of Tropical Agriculture and Food. Science, 40(1), 23-34.
Saulo, A.A., 2005, Sugars and sweeteners in food, Food Safety Technology; 16, 1-7.
Shahbazizadeh, S., Khosravi, K. & Sohrabvandi, S., 2015, Fortification of Iranian Traditional Cookies with Spirulina platensis, Annual Research and Review in Biology, 7(3), 144-154.
Tarrega, A. & Costell, E., 2007, Colour and consistency of semi-solid dairy desserts: Instrumental and sensory measurements, Journal of Food Engineering, 78, 655-661.
Verbeken, D., Bael, K., Thas, O. & Dewettinck, K., 2006, Interactions between kcarrageenan milk proteins and modified starch in sterilized dairy desserts, International Dairy Journal, 16, 482-488.