Document Type : Full Research Paper


Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran


Introduction: Microencapsulation is represented as a technology of packaging solids, liquids, or gaseous materials in miniature sealed capsules that can release their contents at controlled speeds under specific conditions. The packaged materials can be pure materials or a mix, which are also called coated material, core material, actives, internal phase (Fang & Bhandari, 2010). Selenium is a micronutrient essential element for human health, which is toxic in high concentrations. Selenium is a component of selenoproteins that plays an enzymatic and structural roles in human biochemistry. Selenium is known as an antioxidant and catalyzer for active thyroid hormone production. The aim of this study was to optimize the microencapsulation of sodium selenite (100-900 mg per 20 mL final spray solution) using a combination of Arabic gum (25-29% per 20 mL final spray solution) and Persian gum (1-5% per 20 mL final spray solution) as capsule wall applying modified solvent evaporation method to produce microcapsules with the highest encapsulation efficiency (EE) and the smallest possible particle size using the response surface method (RSM) with central composite design (α = 2 with 6 central points and 2 repetition in axial and factorial points).
Materials and Methods: In this research, production of encapsulated sodium selenite at different concentration (100, 300, 500, 700 and 900 mg/20 cc) with Arabic gum (25%, 26%, 27%, 28% and 29%) and  Analogous Farsi gum (5%, 4%, 3%, 2% and 1%) as wall materials by solvent evaporation method was studied. The optimization of microcapsules based on the highest encapsulation efficiency and smallest microcapsules size was studied using RSM. Based on the mentioned parameters, 2 optimum conditions were chosen. The first one was a condition where the samples produced with 135 mg sodium selenite in 20 ml sprayed solution, 27% and 3% Arabic and Farsi gum, respectively. In this condition the encapsulation efficiency was 79.63% whereas the microcapsules size was 49.98 µm.  The second condition was followed by producing samples with 109 mg sodium selenite in 20 ml sprayed solution, 28% and 2% Arabic and Farsi gum with result of 95.10% encapsulation efficiency and the size of 46.71 µm. Finally 390 ppm capsules of the first condition and 480 ppm capsules of second condition (equal to 8.6 ppm sodium selenite salt), synthesized BHA (200 ppm) and sodium selenite salt (8.6 ppm) were added to a free anti-oxidant soybean oil and were kept at 55°C at 0, 23 and 46 days which was equal with 20°C at 0, 180 and 360 days. In this condition, peroxide value, acidity, Thiobarbituric acid, Anisidine value, Totox value and anti-oxidant activity of free anti-oxidant soybean oil were evaluated using SPSS software.
Results & Discussion: The results achieved by RSM showed that sodium selenite concentration had reverse relation on encapsulation efficiency whereas there was direct relation with Arabic and Farsi gum concentration. Also the size of microcapsules with had direct relation on sodium selenite concentration whereas Arabic and Farsi gum concentration had reverse relation. The result of SPSS analyses showed that with presence of the encapsulated sodium selenite anti-oxidant and synthesized BHA anti-oxidant in soybean oil, peroxide value, acidity, Thiobarbituric acid, Anisidine value, Totox value decreased whereas anti-oxidant activity of soybean oil increased. Based on anti-oxidant characteristics in soybean oil, recommended treatments in this research are: condition 2 ˃ condition 1 ≥ BHA ˃ sodium selenite salt ˃ control sample without anti-oxidant. The results of this study recommend the incorporation of encapsulated sodium selenite (condition 1 and 2) for increasing the shelf life of soybean oil as an alternative to synthesized BHA.


استاندارد ملی ایران، 4179. 1377، روغن ها و چربی های خوراکی، اندازه گیری عدد پراکسید.
شهسواری، ن.، سحری، م.ع. و برزگر، م.، 1387، بررسی اثر آنتی‌اکسیدانی اسانس‌های آویشن شیرازی و زیره‌ی کوهی در روغن سویا، پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه تربیت مدرس.
فدوی، ا. و کوهساری، ه.، 1394، اثرات ضداکسایندگی و ضدمیکروبی عصاره برگ درخت پرتقال کشت شده در ایران و بررسی پایداری اکسیداسیون روغن سویا غنی‌سازی شده با آن، فصل‌نامه فناوری‌های نوین غذایی، 7،96-85.
قنبری، ر.، قوامی، م. و صفافر، ح.، 1385، بررسی امکان تولید آنتی اکسیدان طبیعی از گیاه مریم گلی و تاثیر آن در افزایش زمان ماندگاری روغن دنبه، کانولا، پنبه دانه، مجله علوم غذایی و تغذیه، سال سوم، شماره 3، ص 26-18.
موجرلو، ز.، الهامی راد، ا.ح. و نجفی، ع.، 1394 ، مطالعه اثر آنتی‌اکسیدانی عصاره‌ی اتان.لی کنجاله زیتون بر پایداری اکسایشی روغن سویا در مقایسه با برخی آنتی‌اکسیدان‌های شیمیایی، نشریه‌ی نوآوری در علوم و فناوری غذایی، 3، 23-15.
میرنظامی ضیابری، س. ح.، 1388، فناوری روغن و پالایش آن، انتشارات علم کشاورزی ایران، صفحه 464.
AKdeniz, B., Sumnu, G. & Sahin, S., 2017, The effect of maltodextrin and gum Arabic on
onion skin phenolic compouds, Chemical Engineering Transactions, 57, 1891-1896.
Combs, G.F,. 2000, Food system-based approaches to improving micronutrient nutrition: the case for selenium Biofactors, 12, 39-43.
Chang, S., Bassiri, A. & Jalali, H., 2018, Evaluation of antioxidant activity of fennel (Foeniculum vulgare) seed extract on oxidative stability of olive oil, Journal of Chemical health risks, 3, 2.
Fang, Z. & Bhandari, B., 2010, Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21, 10, 510-523.
Firestone, D., 1994, Official methods and recommended practices of the American oil chemists’ society, 4th ed., AOCS Press, Champaign, IL.
Gupta, C., Chawla, P., Arora, S., Tomar, S.K. & Singh, A.K., 2015, Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method–Milk fortification, Food Hydrocolloids, 43, 622-628.
Halliwell, B., Aeschbach, R., Loliger, J. & Arouma, O.I., 1995, The characterization of antioxidants, Food Chemistry and Toxicology, 33, 7, 601-617.
Kohrle, J., Jakob, F., Contempre, B. & Dumont, J.E., 2005, Selenium, the thyroid, and the endocrine system, Endocr Review, 26, 7, 944-84.
Lafka, T.I., Sinanoglou, V. & Lazos, E.S., 2007, The extraction and antioxidant activity of phenolic compounds from winery wastes, Food Chemistry, 104, 3, 1206-1214.
Lin, C.C., Wu, S.J., Chang, C.H. & Ng, L.T., 2003. Antioxidant activity of Cinnamomum cassia, Phytotherapy Research, 17, 7, 726-730.
Lindenschmidt, R.C., Trika, A.F., Guard, M.E. & Witschi, H.P., 1986. The effect dietary butylated hydroxyl toluene on liver and colon tumor development in mice, Toxicology, 38, 2, 151-160.
Mohdaly, A.A., Smetanska, I., Ramadan, M.F., Sarhan, M.A. & Mahmoud, A., 2011. Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils, Industrial Crops and Products, 34, 1, 952-959.
Mustacich, D. & Powis, G., 2000. Thioredoxin reductase, Biochemistry Journal, 346, 1-8.
Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. & Bugarski, B., 2011. An overview of encapsulation technologies for food applications, Food Science, 1, 1806-1815
Rahman, Z., Habib, F. & Shah, W., 2004, Utilization of potato peels as a natural antioxidant in soybean oil, Journal of Food Chemistry, 85, 215-220.
Rayman, M. P., 2000, The importance of selenium to human health, The Lancet, 356, 9225, 233-241.
Sanchez-Moreno, C., Larrauri, J.A. & Saura-Calixto, F., 1999, Free radical scavenging capacity and inhibition of lipid oxidantion of wines, grape juices and related polyphenolic constituents, Food Research International, 32, 6, 407-412.
Shahidi, F. & Zhong, Y., 2005, Lipid Oxidation: Measurement Methods, Bailey’s Industrial Oil and Fat Products, 6th Ed., Six Volume Set, Memorial University of Newfoundland, Canada
Shahidi, F. & Ying, Z., 2005, Antioxidants: regulatory status, Bailey's industrial oil and fat products.
Sultana, B., Anwar, F. & Przybylski, R., 2007, Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating, Food chemistry, 104, 3, 997-1005.
Tompkins, C. & Perkins, E.G., 1999, The evaluation of frying oils with the p-anisidine value, Journal of the American Oil Chemists Society, 76, 945-947.
Wanasundara, P.K.J.P.D. & Shahidi, F., 2005, Antioxidants: science, technology, and applications. Bailey's industrial oil and fat products.
Xu, J., Yang, F., Chen, L., Hu, Y. & Hu, Q., 2003, Effect of selenium on increasing the antioxidant activity of tea leaves harvested during the early spring tea producing season, Journal of Agricultural and Food Chemistry, 51, 4, 1081-1084.
Chan, K.M., De Cker, E.A. & Means, W.J., 1993, Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle, Journal of Food Science, 58, 1, 1-4.
Namiki, M., 1990, Antioxidants/ antimutagens in food, Critical Reviews in Food Science & Nutrition, 29, 4, 273-300.
Velioglu, Y.S., Mazza, G., Gao, L. & Oomah, B.D., 1998, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, Journal of agricultural and food chemistry, 46, 10, 4113-4117.
Suja, K.P., Abraham, J.T., Thamizh, S.N., Jayalekshmy, A. & Arumughan, C., 2004, Antioxidant efficacy of sesame cake extract in vegetable oil protection, Food Chemistry, 84, 3, 393-400.