نوع مقاله : مقاله پژوهشی

نویسندگان

فردوسی مشهد

چکیده

سس­ها امولسیون­های روغن در آب و حاوی مقادیر بالای چربی هستند. افزایش بیماری­های مرتبط با تغذیه، منجر به تمایل مصرف‏کنندگان به تهیه فرآورده­های غذایی سالم­تر شده است. در این مطالعه روش جدید آماده سازی امولسیون­های هوا در روغن (کف­های روغنی) به منظور جایگزینی قطره­های چربی با حباب­های هوا ارائه شده، اثر غلظت سورفکتانت، سرعت و زمان هوادهی بر میزان تولید و پایداری کف­ها بررسی شد. شرایط بهینه تولید (هوادهی مخلوط 10 وزنی سورفکتانت با سرعت 3400 دور در دقیقه به مدت 15 دقیقه) با روش سطح پاسخ تعیین و کف­ها برای تولید سس هوادهی شده آماده شدند. غلظت مناسبی از لینولئیک اسید به عنوان محرک مزه چربی به سس­ها اضافه و ویژگی­های فیزیکوشیمیایی و حسی آن­ها (محرک: 0 و 00/3 میلی مولار و تجاری: بدون چربی، کم چرب و پر چرب) ارزیابی شد. اسیدیته و pH تمام نمونه­ها در محدوده استاندارد قرار داشتند. اختلافی بین pH نمونه­های شاهد و حاوی لینولئیک اسید مشاهده نشد. بیشترین و کمترین میزان pH به ترتیب مربوط به سس­های تجاری پرچرب و بدون چربی بود. با گذشت زمان و کاهش pH، مقدار اسیدیته سس­های هوادهی شده افزایش یافت که از این نظر می­توان ­آن­ها را محصولاتی با ثبات میکروبی مناسب در نظر گرفت. روند اکسیداسیون نمونه­های هوادهی شده بسیار کندتر از نمونه­های تجاری بود. ظاهر، ویژگی­های بافتی و مزه محصولات هوادهی شده پروفایل حسی مشابه با نمونه­های پر چرب را ارائه نمود. به طور کلی نمونه­ هوادهی شده حاوی لینولئیک اسید، دارای امتیازات حسی بالاتری بود که نشان از پذیرش کلی آن­ داشت. طبق این نتایج جایگزینی حباب­های هوا و نیز افزودن محرک مزه چربی در چارچوب برنامه­های کاهش چربی، می­تواند تغییرات حسی موثر بر پذیرش مصرف کنندگان را به حداقل برساند.

کلیدواژه‌ها

  1. Aganovic, K., Bindrich, U., Heinz, V., 2018. Ultra-high pressure homogenisation process for production of reduced fat mayonnaise with similar rheological characteristics as its full fat counterpart. Innov. Food Sci. Emerg. Technol. 45, 208–214. https://doi.org/10.1016/j.ifset.2017.10.013
    Alu’datt, M.H., Rababah, T., Gammoh, S., Ereifej, K., Al-Mahasneh, M., Kubow, S., Tawalbeh, D., 2016. Emulsified protein filaments: types, preparation, nutritional, functional, and biological properties of mayonnaise, in: Emulsions. Elsevier, pp. 557–572. https://doi.org/10.1016/b978-0-12-804306-6.00016-7
    AOCS Official Method Cd 8b-90, 2017. SAMPLING AND ANALYSIS OF COMMERCIAL FATS AND OILS.
    Arancibia, C., Costell, E., Bayarri, S., 2011. Fat replacers in low-fat carboxymethyl cellulose dairy beverages: Color, rheology, and consumer perception. J. Dairy Sci. 94, 2245–2258. https://doi.org/10.3168/jds.2010-3989
    Bazmi, A., Duquenoy, A., Relkin, P., 2007. Aeration of low fat dairy emulsions: Effects of saturated-unsaturated triglycerides. Int. Dairy J. 17, 1021–1027. https://doi.org/10.1016/j.idairyj.2006.12.011
    Bimal, C., Guonong, Z., 2006. Olestra: A Solution to Food Fat? Food Rev. Int. 22, 245–258. https://doi.org/10.1080/87559120600694705
    Binks, B.P., Garvey, E.J., Vieira, J., 2016. Whipped oil stabilised by surfactant crystals. Chem. Sci. 7, 2621–2632. https://doi.org/10.1039/C6SC00046K
    Binks, B.P., Marinopoulos, I., 2017. Ultra-stable self-foaming oils. Food Res. Int. 95, 28–37. https://doi.org/10.1016/j.foodres.2017.02.020
    Binks, B.P., Rocher, A., Kirkland, M., 2011. Oil foams stabilised solely by particles. Soft Matter 7, 1800–1808. https://doi.org/10.1039/c0sm01129k
    Brun, M., Delample, M., Harte, E., Lecomte, S., Leal-Calderon, F., 2015. Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Res. Int. 67, 366–375. https://doi.org/10.1016/j.foodres.2014.11.044
    Campbell, G.M., Mougeot, E., 1999. Creation and characterisation of aerated food products. Trends Food Sci. Technol. 10, 283–296. https://doi.org/10.1016/S0924-2244(00)00008-X
    Chale, A., Burgess, J.R., Mattes, R.D., 2007. Evidence for Human Orosensory ( Taste ?) Sensitivity to Free Fatty Acids. Chem. Senses 32, 423–431. https://doi.org/10.1093/chemse/bjm007
    Chen, X., Yang, D., Zou, Y., Yang, X., 2017. Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets. Food Res. Int. https://doi.org/10.1016/j.foodres.2017.06.045
    Chung, C., Degner, B., Decker, E.A., McClements, D.J., 2013. Oil-filled hydrogel particles for reduced-fat food applications: Fabrication, characterization, and properties. Innov. Food Sci. Emerg. Technol. 20, 324–334. https://doi.org/10.1016/j.ifset.2013.08.006
    Ciron, C.I.E., Gee, V.L., Kelly, A.L., Auty, M.A.E., 2011. Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocoll. 25, 1470–1476. https://doi.org/10.1016/j.foodhyd.2011.02.012
    Ciron, C.I.E., Gee, V.L., Kelly, A.L., Auty, M.A.E., 2010. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J. 20, 314–320. https://doi.org/10.1016/j.idairyj.2009.11.018
    Dickinson, E., 2012. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 28, 224–241. https://doi.org/10.1016/j.foodhyd.2011.12.017
    Dos Passos, R.B., Bazzo, G.C., Almeida, A. da R., Noronha, C.M., Barreto, P.L.M., 2019. Evaluation of oxidative stability of mayonnaise containing poly ε-caprolactone nanoparticles loaded with thyme essential oil. Brazilian J. Pharm. Sci. 55, 1–6. https://doi.org/10.1590/s2175-97902019000118177
    Drenckhan, W., Saint-Jalmes, A., 2015. The science of foaming. Adv. Colloid Interface Sci. 222, 228–259. https://doi.org/10.1016/j.cis.2015.04.001
    El-Yassimi, A., Hichami, A., Besnard, P., Khan, N.A., 2008. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J. Biol. Chem. 283, 12949–12959. https://doi.org/10.1074/jbc.M707478200
    Emadzadeh, B., Razavi, S.M.A., Rezvani, E., Schleining, G., 2015. Steady Shear Rheological Behavior and Thixotropy of Low-Calorie Pistachio Butter. Int. J. Food Prop. 18, 137–148. https://doi.org/10.1080/10942912.2013.822882
    Fameau, A.L., Lam, S., Arnould, A., Velev, O.D., Saint-jalmes, A., 2015. Smart Nonaqueous Foams from Lipid-Based Oleogel. https://doi.org/10.1021/acs.langmuir.5b03660
    Fameau, A.L., Saint-Jalmes, A., 2017. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv. Colloid Interface Sci. 247, 454–464. https://doi.org/10.1016/j.cis.2017.02.007
    FDA, 2018. Title 21--Food and drugs Chapter i--Food and drug administration department of health and human services Subchapter b--Food for human consumption Part 169 Food dressings and flavorings [WWW Document]. URL https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=169
    Featherstone, S., 2014. A Complete Course in Canning and Related Processes: Fourteenth Edition, A Complete Course in Canning and Related Processes: Fourteenth Edition. Elsevier Inc. https://doi.org/10.1016/C2013-0-16339-8
    Friberg, S.E., 2010. Foams from non-aqueous systems. Curr. Opin. Colloid Interface Sci. 15, 359–364. https://doi.org/10.1016/j.cocis.2010.05.011
    Garrec, D.A., Frasch-Melnik, S., Henry, J.V.L., Spyropoulos, F., Norton, I.T., 2012. Designing colloidal structures for micro and macro nutrient content and release in foods. Faraday Discuss. 158, 37–49; discussion 105-24.
    Garrec, D.A., Norton, I.T., 2012. Understanding fluid gel formation and properties. J. Food Eng. 112, 175–182. https://doi.org/10.1016/j.jfoodeng.2012.04.001
    Gonzalez-Tomas, L., Bayarri, S., Taylor, A.J.J., Costell, E., Gonz?lez-Tom?s, L., Bayarri, S., Taylor, A.J.J., Costell, E., 2008. Rheology, flavour release and perception of low-fat dairy desserts. Int. Dairy J. 18, 858–866. https://doi.org/10.1016/j.idairyj.2007.09.010
    Gunes, D.Z., Murith, M., Godefroid, J., Pelloux, C., Deyber, H., Schafer, O., Breton, O., 2017. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization. Langmuir 33, 1563–1575. https://doi.org/10.1021/acs.langmuir.6b04141
    Hosseinvand, A., Sohrabvandi, S., 2016. Physicochemical, textural and sensory evaluation of reduced-fat mustard sauce formulation prepared with Inulin, Pectin and β-glucan. Croat. J. Food Sci. Technol. 8, 46–52. https://doi.org/10.17508/cjfst.2016.8.2.01
    Javidi, F., Razavi, S.M.A., Mohammad Amini, A., 2019. Cornstarch nanocrystals as a potential fat replacer in reduced fat O/W emulsions: A rheological and physical study. Food Hydrocoll. 90, 172–181. https://doi.org/10.1016/j.foodhyd.2018.12.003
    Labbafi, M., Thakur, R.K., Vial, C., Djelveh, G., 2007. Development of an on-line optical method for assessment of the bubble size and morphology in aerated food products. Food Chem. 102, 454–465. https://doi.org/10.1016/j.foodchem.2006.06.011
    McClements, D.J., 2015. Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Adv. Nutr. 6, 338S–52S. https://doi.org/10.3945/an.114.006999
    Mishima, S., Suzuki, A., Sato, K., Ueno, S., 2016a. Formation and Microstructures of Whipped Oils Composed of Vegetable Oils and High-Melting Fat Crystals. JAOCS, J. Am. Oil Chem. Soc. 93, 1453–1466. https://doi.org/10.1007/s11746-016-2888-4
    Mishima, S., Suzuki, A., Sato, K., Ueno, S., 2016b. Formation and Microstructures of Whipped Oils Composed of Vegetable Oils and High ‑ Melting Fat Crystals. J. Am. Oil Chem. Soc. https://doi.org/10.1007/s11746-016-2888-4
    Odriozola-Serrano, I., Soliva-Fortuny, R., Martin-Belloso, O., 2009. Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT - Food Sci. Technol. 42, 93–100. https://doi.org/10.1016/j.lwt.2008.05.008
    Oppermann, A.K.L., Piqueras-Fiszman, B., de Graaf, C., Scholten, E., Stieger, M., 2016. Descriptive sensory profiling of double emulsions with gelled and non-gelled inner water phase. Food Res. Int. 85, 215–223. https://doi.org/10.1016/j.foodres.2016.04.030
    Rego Costa, A.C., Rosado, E.L., Soares-Mota, M., 2012. Influence of the dietary intake of medium chain triglycerides on body composition, energy expenditure and satiety: a systematic review. Nutr. Hosp. 27, 103–8. https://doi.org/10.1590/S0212-16112012000100011
    Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G., 2009. The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem. 114, 905–911. https://doi.org/10.1016/j.foodchem.2008.10.037
    Running, C.A., Craig, B.A., Mattes, R.D., 2015. Oleogustus: The unique taste of fat. Chem. Senses 40, 507–516. https://doi.org/10.1093/chemse/bjv036
    Saremnejad, F., Mohebbi, M., Koocheki, A., 2020. Practical Application of Nonaqueous Foam in the Preparation of a Novel Aerated Reduced-Fat Sauce. Food Bioprod. Process. 119, 216–225. https://doi.org/10.1016/j.fbp.2019.11.004
    Saremnejad, F., Mohebbi, M., Koocheki, A., n.d. Temporal Aspects of using Cross-Modal Interactions in a Novel Aerated Reduced-Fat Sauce Containing Fat Taste Stimulus. Food Qual. Prefer.
    Shamsaee, S., Razavi, S.M.A., Emadzadeh, B., Salehi, E.A., 2017. The effect of basil seed gum and xanthan on the physical and rheological characteristics of low fat mayonnaise. Iran. Food Sci. Technol. Res. J. 13, 65–78. https://doi.org/https://doi.org/10.22067/ifstrj.v1395i0.37356
    Sheng, L., Wang, Y., Chen, J., Zou, J., Wang, Q., Ma, M., 2018. Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Res. Int. #pagerange#. https://doi.org/10.1016/j.foodres.2018.04.007
    Shrestha, L.K., Aramaki, K., Kato, H., Takase, Y., Kunieda, H., 2006. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems. Langmuir 22, 8337–8345. https://doi.org/10.1021/la061204h
    Shrestha, L.K., Shrestha, R.G., Sharma, S.C., Aramaki, K., 2008. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. J. Colloid Interface Sci. 328, 172–179. https://doi.org/10.1016/j.jcis.2008.08.051
    Shrestha, R.G., Shrestha, L.K., Solans, C., Gonzalez, C., Aramaki, K., 2010. Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system. Colloids Surfaces A Physicochem. Eng. Asp. 353, 157–165. https://doi.org/10.1016/j.colsurfa.2009.11.007
    Sorensen, L.B., Cueto, H.T., Andersen, M.T., Bitz, C., Holst, J.J., Rehfeld, J.F., Astrup, A., 2008. The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake. Am. J. Clin. Nutr. 87, 1163–9. https://doi.org/10.1093/ajcn/87.5.1163
    Spence, C., 2015. Multisensory Flavor Perception. Cell 161, 24–35. https://doi.org/10.1016/j.cell.2015.03.007
    Syarifuddin, A., Septier, C., Salles, C., Thomas-Danguin, T., 2016. Reducing salt and fat while maintaining taste: An approach on a model food system. Food Qual. Prefer. 48, 59–69. https://doi.org/10.1016/j.foodqual.2015.08.009
    Tchuenbou-Magaia, F.L., Norton, I.T., Cox, P.W., 2009. Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocoll. 23, 1877–1885. https://doi.org/10.1016/j.foodhyd.2009.03.005
    Tchuenbou-Magaia, F.L.L., Al-Rifai, N., Ishak, N.E.M., Norton, I.T., Cox, P.W., Al-Rifai, N., Ishak, N.E.M., Norton, I.T., Cox, P.W., 2011. Suspensions of air cells with cysteine-rich protein coats: Air-filled emulsions. J. Cell. Plast. 47, 2012. https://doi.org/10.1177/0021955X11400937
    Thaiudom, S., Khantarat, K., 2012. Stability and rheological properties of fat-reduced mayonnaises by using sodium octenyl succinate starch as fat replacer. Procedia Food Sci. 1, 315–321. https://doi.org/10.1016/j.profoo.2011.09.049
    Velazquez, A.L., Vidal, L., Varela, P., Ares, G., 2020. Cross-modal interactions as a strategy for sugar reduction in products targeted at children: Case study with vanilla milk desserts. Food Res. Int. 130. https://doi.org/10.1016/j.foodres.2019.108920
    Worrasinchai, S., Suphantharika, M., Pinjai, S., Jamnong, P., 2006. β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 20, 68–78. https://doi.org/10.1016/j.foodhyd.2005.03.005