نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این مطالعه روش جدید آمادهسازی امولسیون‌های هوا در روغن (کف‌های روغنی) به‌منظور جایگزینی قطره‌های چربی با حباب‌های هوا ارائه شده، اثر غلظت سورفکتانت، سرعت و زمان هوادهی بر میزان تولید و پایداری کف‌ها بررسی شد. شرایط بهینه تولید (هوادهی مخلوط 10 درصد وزنی سورفکتانت با سرعت 3400 دور در دقیقه به مدت 15 دقیقه) با روش سطح پاسخ تعیین و کف‌ها برای تولید سس هوادهی شده آماده شدند. لینولئیک اسید به‌عنوان محرک مزه چربی (صفر و 3 میلی مولار) به سس‌ها اضافه و ویژگی‌های فیزیکوشیمیایی و حسی آن‌ها با سس‌های تجاری مقایسه شد. اسیدیته و pH نمونه‌ها در محدوده استاندارد قرار داشتند. بیشترین میزان pH مربوط به سس تجاری پرچرب بود (0001/0p<). سس تجاری بدون چربی با کم‌ترین میزان pH، اختلاف معنی‌داری با بقیه نداشت (05/0p>). بین pH سس‌های هوادهی شده (شاهد و حاوی لینولئیک اسید) اختلافی مشاهده نشد. اگرچه با گذشت زمان pH این سس‌ها کمی کاهش یافت، اما این تغییر معنی‌دار نبود (05/0p>). اعداد پراکسید و مقادیر مالون دی آلدهید نمونه‌های هوادهی شده و تجاری کم‌چرب در مدت هفت روز اختلافی با یکدیگر نداشتند (05/0p>). به‌طورکلی، روند اکسیداسیون سس پرچرب بسیار سریع‌تر از سایر نمونه‌ها بود. ظاهر، طعم و ویژگی‌های بافتی و پذیرش کلی محصولات هوادهی شده و نمونه‌های تجاری ارزیابی شد. پذیرش کلی سس هوادهی شده شاهد با سس حاوی لینولئیک اسید اختلاف قابل توجهی داشت (001/0p <)، اما پذیرش کلی نمونه حاوی لینولئیک اسید با سس‌های تجاری کم‌چرب و پرچرب معنی‌دار نبود (05/0p>). بر اساس این نتایج جایگزینی حباب‌های هوا و نیز افزودن محرک مزه چربی در چارچوب برنامه‌های کاهش چربی، می‌تواند تغییرات حسی موثر بر پذیرش مصرف‌کنندگان را به حداقل برساند.

کلیدواژه‌ها

موضوعات

  1. Aganovic, K., Bindrich, U., & Heinz, V. (2018). Ultra-high pressure homogenisation process for production of reduced fat mayonnaise with similar rheological characteristics as its full fat counterpart. Innovative food science & emerging technologies, 45, 208-214. https://doi.org/10.1016/j.ifset.2017.10.013
  2. Alu'datt, M. H., Rababah, T., Gammoh, S., Ereifej, K., Al-Mahasneh, M., Kubow, S., & Tawalbeh, D. (2016). Emulsified protein filaments: types, preparation, nutritional, functional, and biological properties of mayonnaise. In Emulsions (pp. 557-572). Academic Press. https://doi.org/10.1016/B978-0-12-804306-6.00016-7
  3. AOCS Official Method Cd 8b-90, 2017. Sampling and analysis of commercial fats and oils.
  4. Arancibia, C., Costell, E., & Bayarri, S. (2011). Fat replacers in low-fat carboxymethyl cellulose dairy beverages: Color, rheology, and consumer perception. Journal of dairy science, 94(5), 2245-2258. https://doi.org/10.3168/jds.2010-3989
  5. Bazmi, A., Duquenoy, A., & Relkin, P. (2007). Aeration of low fat dairy emulsions: Effects of saturated–unsaturated triglycerides. International dairy journal, 17(9), 1021-1027. https://doi.org/10.1016/j.idairyj.2006.12.011
  6. Bimal, C., & Guonong, Z. (2006). Olestra: A solution to food fat?. Food Reviews International, 22(3), 245-258. https://doi.org/10.1080/87559120600694705
  7. Binks, B. P., Garvey, E. J., & Vieira, J. (2016). Whipped oil stabilised by surfactant crystals. Chemical science, 7(4), 2621-2632. DOI: 1039/C6SC00046K
  8. Binks, B. P., & Marinopoulos, I. (2017). Ultra-stable self-foaming oils. Food Research International, 95, 28-37. https://doi.org/10.1016/j.foodres.2017.02.020
  9. Binks, B. P., Rocher, A., & Kirkland, M. (2011). Oil foams stabilised solely by particles. Soft Matter, 7(5), 1800-1808. https://doi.org/10.1039/C0SM01129K
  10. Brun, M., Delample, M., Harte, E., Lecomte, S., & Leal-Calderon, F. (2015). Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Research International, 67, 366-375. https://doi.org/10.1016/j.foodres.2014.11.044
  11. Campbell, G. M., & Mougeot, E. (1999). Creation and characterisation of aerated food products. Trends in food science & technology, 10(9), 283-296. https://doi.org/10.1016/S0924-2244(00)00008-X
  12. Chale-Rush, A., Burgess, J. R., & Mattes, R. D. (2007). Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chemical senses, 32(5), 423-431. https://doi.org/10.1093/chemse/bjm007
  13. Chen, X. W., Yang, D. X., Zou, Y., & Yang, X. Q. (2017). Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets. Food Research International, 99, 679-687. https://doi.org/10.1016/j.foodres.2017.06.045v
  14. Chung, C., Degner, B., Decker, E. A., & McClements, D. J. (2013). Oil-filled hydrogel particles for reduced-fat food applications: Fabrication, characterization, and properties. Innovative Food Science & Emerging Technologies, 20, 324-334. https://doi.org/10.1016/j.ifset.2013.08.006
  15. Chung, C., Smith, G., Degner, B., & McClements, D. J. (2016). Reduced fat food emulsions: physicochemical, sensory, and biological aspects. Critical reviews in food science and nutrition, 56(4), 650-685. https://doi.org/10.1080/10408398.2013.792236
  16. Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. (2011). Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocolloids, 25(6), 1470-1476. https://doi.org/10.1016/j.foodhyd.2011.02.012
  17. Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food hydrocolloids, 28(1), 224-241. https://doi.org/10.1016/j.foodhyd.2011.12.017
  18. Passos, R. B. D., Bazzo, G. C., Almeida, A. D. R., Noronha, C. M., & Barreto, P. L. M. (2019). Evaluation of oxidative stability of mayonnaise containing poly ε-caprolactone nanoparticles loaded with thyme essential oil. J. Pharm. Sci.(Online), 18177-18177.
  19. Drenckhan, W., & Saint-Jalmes, A. (2015). The science of foaming. Advances in Colloid and Interface Science, 222, 228-259. https://doi.org/10.1016/j.cis.2015.04.001
  20. El-Yassimi, A., Hichami, A., Besnard, P., & Khan, N. A. (2008). Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. Journal of biological chemistry, 283(19), 12949-12959. DOI:https://doi.org/10.1074/jbc.M707478200
  21. Emadzadeh, B., Razavi, S. M. A., Rezvani, E., & Schleining, G. (2015). Steady shear rheological behavior and thixotropy of low-calorie pistachio butter. International Journal of Food Properties, 18(1), 137-148. https://doi.org/10.1080/10942912.2013.822882
  22. Fameau, A. L., Lam, S., Arnould, A., Gaillard, C., Velev, O. D., & Saint-Jalmes, A. (2015). Smart nonaqueous foams from lipid-based oleogel. Langmuir, 31(50), 13501-13510. https://doi.org/10.1021/acs.langmuir.5b03660
  23. Fameau, A. L., & Saint-Jalmes, A. (2017). Non-aqueous foams: Current understanding on the formation and stability mechanisms. Advances in colloid and interface science, 247, 454-464. https://doi.org/10.1016/j.cis.2017.02.007
  24. Harvey, J. L. (1959). Title 21—Food and drugs chapter I—Food and drug administration, department of health, education, and welfare subchapter B—Food and food products part 121—Food additives definitions and procedural and interpretative regulations. Food, Drug, Cosmetic Law Journal, 14(4), 269-290.
  25. Featherstone, S., 2014. A Complete Course in Canning and Related Processes: Fourteenth Edition, A Complete Course in Canning and Related Processes: Fourteenth Edition. Elsevier Inc. https://doi.org/10.1016/C2013-0-16339-8
  26. Garrec, D. A., Frasch-Melnik, S., Henry, J. V., Spyropoulos, F., & Norton, I. T. (2012). Designing colloidal structures for micro and macro nutrient content and release in foods. Faraday Discussions, 158(1), 37-49. https://doi.org/10.1039/C2FD20024D
  27. Garrec, D. A., & Norton, I. T. (2012). Understanding fluid gel formation and properties. Journal of Food Engineering, 112(3), 175-182. https://doi.org/10.1016/j.jfoodeng.2012.04.001
  28. González-Tomás, L., Bayarri, S., Taylor, A. J., & Costell, E. (2008). Rheology, flavour release and perception of low-fat dairy desserts. International Dairy Journal, 18(8), 858-866. https://doi.org/10.1016/j.idairyj.2007.09.010
  29. Guardeno, L. M., Hernando, I., Llorca, E., Hernández‐Carrión, M., & Quiles, A. (2012). Microstructural, physical, and sensory impact of starch, inulin, and soy protein in low‐fat gluten and lactose free white sauces. Journal of food science, 77(8), C859-C865. https://doi.org/10.1111/j.1750-3841.2012.02798.x
  30. Gunes, D. Z., Murith, M., Godefroid, J., Pelloux, C., Deyber, H., Schafer, O., & Breton, O. (2017). Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels Evidence for Pickering Stabilization. Langmuir, 33(6), 1563-1575. https://doi.org/10.1021/acs.langmuir.6b04141
  31. Hosseinvand, A., & Sohrabvandi, S. (2016). Physicochemical, textural and sensory evaluation of reduced-fat mustard sauce formulation prepared with Inulin, Pectin and β-glucan. Croatian journal of food science and technology, 8(2), 46-52. https://doi.org/10.17508/CJFST.2016.8.2.01
  32. Javidi, F., Razavi, S. M., & Amini, A. M. (2019). Cornstarch nanocrystals as a potential fat replacer in reduced fat O/W emulsions: A rheological and physical study. Food Hydrocolloids, 90, 172-181. https://doi.org/10.1016/j.foodhyd.2018.12.003
  33. Karas, R., Skvarča, M., & Žlender, B. (2002). Sensory quality of standard and light mayonnaise during storage. Food Technology and Biotechnology, 40(2), 119-127.
  34. Labbafi, M., Thakur, R. K., Vial, C., & Djelveh, G. (2007). Development of an on-line optical method for assessment of the bubble size and morphology in aerated food products. Food Chemistry, 102(2), 454-465. https://doi.org/10.1016/j.foodchem.2006.06.011
  35. Laca, A., Sáenz, M. C., Paredes, B., & Díaz, M. (2010). Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering, 97(2), 243-252. https://doi.org/10.1016/j.jfoodeng.2009.10.017
  36. Lee, D. H., Jeong, I. J., & Kim, K. J. (2018). A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach. Quality and Reliability Engineering International, 34(3), 360-376. https://doi.org/10.1002/qre.2258
  37. Liu, H., Xu, X. M., & Guo, S. D. (2007). Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT-Food Science and Technology, 40(6), 946-954. https://doi.org/10.1016/j.lwt.2006.11.007
  38. McClements, D. J. (2015). Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Advances in Nutrition, 6(3), 338S-352S. https://doi.org/10.3945/an.114.006999
  39. Mishima, S., Suzuki, A., Sato, K., & Ueno, S. (2016). Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals. Journal of the American Oil Chemists' Society, 93(11), 1453-1466. https://doi.org/10.1007/s11746-016-2888-4
  40. Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT-Food Science and Technology, 42(1), 93-100. https://doi.org/10.1016/j.lwt.2008.05.008
  41. Oppermann, A. K. L., Piqueras-Fiszman, B., De Graaf, C., Scholten, E., & Stieger, M. (2016). Descriptive sensory profiling of double emulsions with gelled and non-gelled inner water phase. Food Research International, 85, 215-223. https://doi.org/10.1016/j.foodres.2016.04.030
  42. Saremnejad, F., Mohebbi, M., & Koocheki, A. (2020). Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce. Food and Bioproducts Processing, 119, 216-225. https://doi.org/10.1016/j.fbp.2019.11.004
  43. Costa, A. R., Rosado, E. L., & Soares-Mota, M. (2012). Influence of the dietary intake of medium chain triglycerides on body composition, energy expenditure and satiety; a systematic review. Nutricion hospitalaria, 27(1), 103-108.
  44. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry, 114(3), 905-911. https://doi.org/10.1016/j.foodchem.2008.10.037
  45. Running, C. A., Craig, B. A., & Mattes, R. D. (2015). Oleogustus: the unique taste of fat. Chemical senses, 40(7), 507-516. https://doi.org/10.1093/chemse/bjv036
  46. Running, C. A., & Mattes, R. D. (2016). A review of the evidence supporting the taste of non-esterified fatty acids in humans. Journal of the American Oil Chemists' Society, 93(10), 1325-1336. https://doi.org/10.1007/s11746-016-2885-7
  47. Shamsaei, S., Razavi, S. M. A., Emadzadeh, B., & Atayesalehi, E. (2017). The effect of basil seed gum and xanthan on the physical and rheological characteristics of low fat mayonnaise. Iranian Food Science and Technology Research Journal, 13(1), 65-78. http://dx.doi.org/10.22067/ifstrj.v1395i0.37356
  48. Sheng, L., Wang, Y., Chen, J., Zou, J., Wang, Q., & Ma, M. (2018). Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Research International, 108, 604-610. https://doi.org/10.1016/j.foodres.2018.04.007
  49. Shrestha, L. K., Aramaki, K., Kato, H., Takase, Y., & Kunieda, H. (2006). Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems. Langmuir, 22(20), 8337-8345. https://doi.org/10.1021/la061204h
  50. Shrestha, L.K., Shrestha, R.G., Sharma, S.C., Aramaki, K., (2008). Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. J. Colloid Interface Sci. 328, 172–179. https://doi.org/10.1016/j.jcis.2008.08.051
  51. Shrestha, R. G., Shrestha, L. K., Solans, C., Gonzalez, C., & Aramaki, K. (2010). Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(2-3), 157-165. https://doi.org/10.1016/j.colsurfa.2009.11.007
  52. Sørensen, L. B., Cueto, H. T., Andersen, M. T., Bitz, C., Holst, J. J., Rehfeld, J. F., & Astrup, A. (2008). The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake. The American journal of clinical nutrition, 87(5), 1163-1169. https://doi.org/10.1093/ajcn/87.5.1163
  53. Spence, C. (2015). Multisensory flavor perception. Cell, 161(1), 24-35. https://doi.org/10.1016/j.cell.2015.03.007
  54. Tchuenbou-Magaia, F. L., Norton, I. T., & Cox, P. W. (2009). Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocolloids, 23(7), 1877-1885. https://doi.org/10.1016/j.foodhyd.2009.03.005
  55. Thaiudom, S., & Khantarat, K. (2011). Stability and rheological properties of fat-reduced mayonnaises by using sodium octenyl succinate starch as fat replacer. Procedia Food Science, 1, 315-321. https://doi.org/10.1016/j.profoo.2011.09.049
  56. Velázquez, A. L., Vidal, L., Varela, P., & Ares, G. (2020). Cross-modal interactions as a strategy for sugar reduction in products targeted at children: Case study with vanilla milk desserts. Food Research International, 130, 108920. https://doi.org/10.1016/j.foodres.2019.108920.
  57. Sorensen, L. B., Cueto, H. T., Andersen, M. T., Bitz, C., Holst, J. J., Rehfeld, J. F., & Astrup, A. (2008). The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake. The American journal of clinical nutrition, 87(5), 1163-1169. https://doi.org/10.1093/ajcn/87.5.1163
  58. Shamsaee, S., Razavi, S.M.A., Emadzadeh, B., Salehi, E.A., (2017). The effect of basil seed gumand xanthan on the physical and rheological characteristics of low fat mayonnaise. Iran. Food Sci. Technol. Res. J. 13, 65–78. https://doi.org/https://doi.org/10.22067/ifstrj.v1395i0.37356
  59. Shrestha, R.G., Shrestha, L.K., Solans, C., Gonzalez, C., Aramaki, K., (2010). Nonaqueous foamwith outstanding stability in diglycerol monomyristate/olive oil system. ColloidsSurfaces A Physicochem. Eng. Asp. 353, 157–165. https://doi.org/10.1016/j.colsurfa.2009.11.007
  60. Friberg, S.E., (2010). Foams from non-aqueous systems. Curr. Opin. Colloid Interface Sci. 15, 359–364. https://doi.org/10.1016/j.cocis.2010.05.011
  61. FDA, (2018). Title 21--Food and drugs Chapter i--Food and drug administration department of health and human services Subchapter b--Food for human consumption Part 169 Food dressings and flavorings [WWW Document]. URL https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=169
  62. Guardeño, L.M., Hernando, I., Llorca, E., Hernández-Carrión, M., Quiles, A., (2012). Microstructural, Physical, and Sensory Impact of Starch, Inulin, and Soy Protein in Low-Fat Gluten and Lactose Free White Sauces. J. Food Sci. 77, 1–7. https://doi.org/10.1111/j.1750-3841.2012.02798.x
  63. Syarifuddin, A., Septier, C., Salles, C., Thomas-Danguin, T., 2016. Reducing salt and fat while maintaining taste: An approach on a model food system. Food Qual. Prefer. 48, 59–69. https://doi.org/10.1016/j.foodqual.2015.08.009
  64.