نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

چکیده

در این پژوهش با توجه به لزوم حفظ ویژگی‌های کیفی محصولات کشاورزی در مرحله پس از برداشت و افزایش زمان ماندگاری آنها تاثیر پوشش خوراکی ژل آلوئه‌ورا (صفر، 25، 50، 75 و 100 درصد حجمی/ حجمی) و دمای نگهداری (5، 12 و 25 درجه سلسیوس) بر تغییرات برخی از ترکیبات زیست‌فعال گوجه‌فرنگی‌‎های گیلاسی حین دوره نگهداری مورد بررسی قرار گرفت. بدین منظور گوجه‌فرنگی‌های گیلاسی با غلظت‌های مختلف از ژل آلوئه‌ورا به‌روش غوطه‌وری پوشش‌دار شدند و پس از بسته‌بندی به مدت 24 روز در دماهای مختلف نگهداری شدند. تجزیه و تحلیل آماری نشان داد غلظت ژل آلوئه‌ورا، دما و زمان نگهداری تاثیر معنی‌داری بر روند تغییرات ترکیبات زیست‌فعال داشتند (05/0p<) هرچند این تفاوت بین سطح 75 و 100 درصد غلظت ژل آلوئه‌ورا معنی‌داری نبود (05/0<p). بر اساس نتایج به‌دست آمده میزان آسکوربیک اسید با افزایش دما و زمان نگهداری کاهش یافت در حالی که اعمال پوشش سبب حفظ آسکوربیک اسید حداکثر به میزان 65/12 درصد گردید. روند تغییرات لیکوپن گوجه‌فرنگی‌های گیلاسی بر خلاف روند تغییرات آسکوربیک اسید بود. حین دوره نگهداری در دمای 5 درجه سلسیوس محتوای ترکیبات فنولی کل و فعالیت مهارکنندگی رادیکال‌های آزاد DPPH گوجه‌فرنگی‌های گیلاسی شاهد به ترتیب حداکثر به میزان 35/12 و 60/21 درصد افزایش یافت. اما بر خلاف دمای 5 درجه سلسیوس که این افزایش به‌طور پیوسته بود با افزایش دما به 12 و 25 درجه سلسیوس مقدار ترکیبات فنولی کل به‌ترتیب از روز 12 و 8 دوره نگهداری روندی کاهشی را آغاز نمود. این در حالی است که با افزایش غلظت ژل آلوئه‌ورا محتوای ترکیبات فنولی کل و فعالیت ضدرادیکالی به‌ترتیب حداکثر به میزان 24/12 و 30/24 درصد افزایش یافت. بر اساس یافته‌های این پژوهش برای حفظ ترکیبات زیست‌فعال گوجه‌فرنگی گیلاسی در مرحله پس از برداشت می‌توان از دمای 5 درجه سلسیوس و ژل آلوئه‌ورا با غلظت 75 درصد حجمی/ حجمی به‌عنوان یک پوشش خوراکی طبیعی استفاده نمود.

کلیدواژه‌ها

موضوعات

  1. Ali, S., Sattar Khan, A., Nawaz, A., Anjum, M. A., Ejaz, S., & Hussain, S. (2019). Aloe vera gel coating delays postharvest browning and maintains quality of harvested litchi fruit. Postharvest Biology and Technology, 157, 110960. https://doi.org/10.1016/j.postharvbio.2019.110960
  2. Arab, L., & Steck, S. (2000). Lycopene and cardiovascular disease. The American Journal of Clinical Nutrition., 71, 1691-1695. https://doi.org/10.1093/ajcn/71.6.1691S
  3. Arias, R., Lee, T. C., Logendra, L., & Janes, H. (2000). Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural and Food Chemistry, 48, 1697–1702. https://doi.org/10.1021/jf990974e
  4. Artés, F., Sánchez, E., & Tijskens, L. M. M. (1998). Quality and shelf life of tomatoes improved by intermittent warming. Lebensmittel-Wissenschaft und –Technologie, 31, 427–431. https://doi.org/10.1006/fstl.1997.0321
  5. Barber, N. J., & Barber, J. (2002). Lycopene and prostate cancer. Prostate Cancer Prostatic Disease, 5, 6-12. https://doi.org/10.1038/sj.pcan.4500560
  6. Batu, A. (2004). Determination of acceptable firmness and colour values of tomatoes Journal of Food Engineering, 61, 471-475. https://doi.org/10.1016/S0260-8774(03)00141-9
  7. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  8. Britton , & Hornero-Mendez D. (2004). Carotenoids and colour in fruit and vegetables, in Carotenoids Handbook ed. by Britton G, Liaaen-Jensen S and Pfander H. Birkhauser, Basle, 11–27.
  9. Davidek, J., Velisek, J., & Pokorny, J. (1990). Chemical changes during food processing, 4.10: Ascorbic and dehydroascorbic acid (vitamin C). Czechoslovak Medical Press, Avicenum, Prague.
  10. D’Aquino, S., Mistriotis, A., Briassoulis, D., Di Lorenzo, M. L., Malinconico, M., & Palma, A. (2016). Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20 ºC. Postharvest Bioliology and Technology, 115, 103–112. https://doi.org/10.1016/j.postharvbio.2015.12.014
  11. Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369-382. https://doi.org/10.1002/jsfa.1370
  12. Egea, M. I., Flores, B., Sánchez-Bel, P., Valdenegro, M., Mártinezmadrid, M. C., & Romojaro, F. (2009). Factors influencing the evolution of the antioxidant compounds and the total antioxidant activity in fruits and vegetable products. Postharvest Technologies for Horticultural Crops, Research Signpost Publisher, Kerala, Vol. 2, 121-138.
  13. Esmaili, S. (2011). Effect of modified atmosphere packaging on quality of pink tomato after harvesting. The 2nd National of Food Security. Islamic Azad University of Savadkouh.[in Persian].
  14. Fagundes, C., Palou, L., Monteiro, R., & Pérez-Gago, M. B. (2014). Effect of antifungal hydroxipropyl methylcellullose-beewax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology, 92, 1-8. https://doi.org/10.1016/j.postharvbio.2014.01.006
  15. Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249-257. https://doi.org/10.1016/j.scienta.2015.07.027
  16. FAOSTAT, Food and Agriculture Organization (FAO), Statistics, (2017), Ed. http://www.fao.org/faostat/en. 2017.
  17. Fraser, P., Romer, S., Shipton, C., Mills, P., Kiano, J., Misawa, N., Bramley, P. (2002). Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Nat. Am. Sci., 99(2), 1092-1097. https://doi.org/10.1073/pnas.241374598
  18. Ganjloo, A., Zandi, M., Bimakr, M., & Monajem, S. (2020). Ripening Stages Control of Cherry Tomato Coated with Aloe Vera Gel using Artificial Vision System. Journal of Food Science and Technology, 17(105), 135-149.doi: 52547/fsct.17.105.135
  19. Ghasemnezhad, M., & Shiri, M. A. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca ) during cold storage. Caspian Journal of Environmental Sciences, 8(1), 25-33.
  20. Giovanelli, G., Lavelli, V., Peri, C., & Nobili, S. (1999). Variation in antioxidant compounds of tomato during vine and post-harvest ripening. Journal of the Science of Food and Agriculture, 79, 1583–1588. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1583::AID-JSFA405>3.0.CO;2-J
  21. Gol, N. B., Patel, P. R., & Rao, T. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185-195. https://doi.org/10.1016/j.postharvbio.2013.06.008
  22. Gorgani, S., Sedaghat, N., & Hosseini, F. (2018). Effects of edible coating (Aloe vera gel) and type of packaging on the quality of Hayward kiwi fruit. JFST, 15(82), 437-450.
  23. Gross, J. (1987). Pigments in fruits. Academic Press: London.
  24. Guerra, I. C. D., de Oliveira, P. D. L., de Souza Pontes, A. L., Lúcio, A. S. S. C., Tavares, J. F., Barbosa-Filho, J. M., de Souza, E. L. (2015). Coatings comprising chitosan and Mentha piperita or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. International Journal of Food Microbiology, 214, 168–178. https://doi.org/10.1016/j.ijfoodmicro.2015.08.009
  25. Guillen, F., Diaz-Mula, H. M., Zapata, P. J., Valero, D., Serrano, M., Castillo, S., & Martinez-Romero, D. (2013). Aloe Arborescens and Aloe Vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology, 83, 54–57. https://doi.org/10.1016/j.postharvbio.2013.03.011
  26. Hassanpour, H. (2015). Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Science and Technology, 60(1), 495-501. https://doi.org/10.1016/j.lwt.2014.07.049
  27. Hong, K., Xie, J., Zhang, L., Sun, D., & Gong, D. (2012). Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava ) fruit during cold storage. Scientia Horticulturae, 144, 172–178. https://doi.org/10.1016/j.scienta.2012.07.002
  28. Jafari, S., Hojjati, M., & Noshad, M. (2018). Effect of trehalose coating included Artemisia sieberi essential oil on some quantitative and qualitative postharvest characteristics of cherry tomato. Innovative Food Technologies, 5(2), 287-300. DOI: 22104/jift.2017.2558.1600
  29. Javanmardi, J., & Kubota, C. (2006). Variation of lycopen, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41, 151–155. https://doi.org/10.1016/j.postharvbio.2006.03.008
  30. Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables-the millennium’s health. International Journal of Food Science & Technology, 36, 703-725. https://doi.org/10.1111/j.1365-2621.2001.00513.x
  31. Khaliq, G., Ramzan, M., & Baloch, A. H. (2019). Effect of Aloe vera gel coating enriched with Fagonia indica plant extract on physicochemical and antioxidant activity of sapodilla fruit during postharvest storage. Food Chemistry, 286, 346-353. https://doi.org/10.1111/j.1365-2621.2001.00513.x
  32. Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 18, 321–326. https://doi.org/10.1016/S0308-8146(02)00423-5
  33. Laja, M., Mareczek, A., & Ben, J. (2003). Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry, 80, 303-307. https://doi.org/10.1016/S0308-8146(02)00263-7
  34. Leonardi, C., Ambrosino, P., Esposito, F., & Fogliano, V. (2000). Antioxidant activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. Journal of Agricultural and Food Chemistry 48, 4723–4727. https://doi.org/10.1021/jf000225t
  35. Leoni, C. (1992). Industrial quality as influenced by crop management. Acta Horticulture, 301, 177–184.DOI: 17660/ActaHortic.1992.301.20
  36. Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effect of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44, 300–306. https://doi.org/10.1016/j.postharvbio.2006.12.019
  37. Martınez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Sience of Food and Agriculture, 82, 323-330. https://doi.org/10.1002/jsfa.1035
  38. Mallhi, T. H., Rasheed, M., Khan, Y. H., Alzarea, A. I., & Raja, A.A. (2020). Bioactive compounds for the treatment of metabolic disorders. In: Akash M., Rehman K., Hashmi M. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies, Emerging Contaminants and Associated Treatment Technologies. Springer, Cham., pp 489-505. https://doi.org/10.1007/978-3-030-45923-9_28
  39. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405–410.https://doi.org/10.1016/S1360-1385(02)02312-9
  40. Nguyen, M. L. (1999). Lycopene: chemical and biological properties. Food Tech., 53, 38-45.
  41. Ni, Y., Turner, D., Yates, K. M., & Tizard, I. (2004). Isolation and characterization of structural components of Aloe vera leaf pulp. International Immunopharmacology, 4 (14), 1745–1755. https://doi.org/10.1016/j.intimp.2004.07.006
  42. Nour, V., Trandafir, I., & Ionica, M. E. (2014). Evolution of antioxidant activity and bioactive compounds in tomato (Lycopersicon esculentum ) fruits during growth and ripening. Journal of Applied Botany and Food Quality, 87, 97 – 103.
  43. Odriozola-Serrano, I., Soliva-Fortuny, R., & Martın-Belloso, O. (2008). Antioxidant properties and shelf-life extension of fresh-cut tomatoes stored at different temperatures. Journal of the Science of Food and Agriculture, 88, 2606-2614.
  44. Pirhayati , Daraei Garmakhany A., Gholami M., Mirzakhani A., & Khalilzadeh Ranjbar, G. (2019). Application of Aloe vera gel coating enriched with golpar essential oil on the shelf life of peach fruit (Prunus persica var, Zafarani). Iranian Journal of Nutrition Sciences & Food Technology, 13(4), 75-88.
  45. Plaza, L., Sánchez-Moreno, C., Elez-Martínez, P., de Ancos, B., Martín-Belloso, O., & Cano, M. P. (2006). Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. European Food Research and Technology, 223(4), 487-493. https://doi.org/10.1007/s00217-005-0228-2
  46. Pregnolatto, W., & Pregnolatto, N. P. (1985). Normas analíticas do Instituto Adolfo Lutz. São Paulo: Instituto Adolfo.
  47. Radi, M., Firouzi, E., Akhavan, H., & Amiri, S. (2017). Effect of gelatin-based edible coatings incorporated with Aloe vera and black and green tea extracts on the shelf life of fresh-cut oranges. Journal of Food Quality, 10, 9764650. https://doi.org/10.1155/2017/9764650
  48. Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Quaglia, G. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum Naomi F1) harvested at different ripening stages. Journal of Agricultural and Food Chemistry, 50, 6550-6556. https://doi.org/10.1021/jf020315t
  49. Reyes, L. F., Villarreal, J. E., & Cisneros-Zavallos, L. (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry, 101, 1254–1262. https://doi.org/10.1016/j.foodchem.2006.03.032
  50. Rosello, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91, 1014-1021. https://doi.org/10.1002/jsfa.4276
  51. Sadler, G., Davis, J., & Dezman, D. (1990). Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruits homogenates. Journal of Food Science, 55, 1460-1461. https://doi.org/10.1111/j.1365-2621.1990.tb03958.x
  52. Sahlin, E., Savage, G. P., & Lister, C. E. (2004). Investigation of the antioxidant properties of tomatoes after processing. Journal of Food Composition and Analysis, 17 635–647. https://doi.org/10.1016/j.jfca.2003.10.003
  53. Serrano, M., Valverde, J. M., Guilleän, F., Castillo, S., Martiänez-Romero, D., & Valero, D. (2006). Use of Aloe vera gel coating preserves the functional properties of table grapes. Journal of Agricultural and Food Chemistry, 54, 3882-3886. https://doi.org/10.1021/jf060168p
  54. Shahiri Tabaest, H., Sedaghat, N., Saeedi Pooya, E., & Alipour, A. (2013). Shelf life improvement and postharvest quality of cherry tomato (Solanum lycopersicum) fruit using basil mucilage edible coating and cumin essential oil. International Journal of Agronomy and Plant Production, 4(9), 2346-2353.
  55. Shi, J., Le Maguer, M., & Bryan, M. (2002). Lycopene from tomatoes. In: Shi, J., Ghazza, Le Maguer, M. (Eds.), Funtional Foods. Biochemical and Processing Aspects, Vol. 2. CRC Press, Ottawa, Canada, pp. 135-166.
  56. Singh, R., Rastogi, S., & Dwivedi, U. (2010). Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety, 9, 398–416. https://doi.org/10.1111/j.1541-4337.2010.00116.x
  57. Stahl, W., & Sies, H. (1996). Lycopene: a biologically important carotenoid for humans? Archives of Biochemistry and Biophysics, 336, 1–9.
  58. Thompson, K. A., Marshall, M. R., Sims, C. A., EWei, C. I., Sargent, S. A., & Sott, J. W. (2000). Cultivar, maturity and heat treatment on lycopene content in tomatoes. Journal of Food Science, 65, 791-795. https://doi.org/10.1111/j.1365-2621.2000.tb13588.x
  59. Vahdat, S., Ghasemnezhad, M., Fotouhi Ghazvini, R., Shiri, M. A., & Khodaparast, S. A. K. (2012). Effect of different concentration of Aloe vera gel on maintaining postharvest quality of strawberry. Journal of Food Research, 22(3), 271-285.
  60. Valverde, J. M., Valero, D., Martinez-Romero, D., Guillen, F., Castill, S., & Serrano, M. (2005). Novel edible coatings based on Aloe vera gel to maintain table grape quality and safety. Journal of Agricultural and Food Chemistry, 53, 7807-7813. https://doi.org/10.1021/jf050962v
  61. Wei, Y., Zhou, D., Wang, Z., Tu, S., Shao, X., & Peng, J. (2018). Hot air treatment reduces postharvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes. Journal of the Science of Food and Agriculture, 98(6), 2105–2112. https://doi.org/10.1002/jsfa.8692
  62. Wu, S., Lu, M., & Wang, S. (2016). Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. Food Chemistry. 199, 296–300. https://doi.org/10.1016/j.foodchem.2015.12.029
  63. Zafari, E., Mohammadkhani, A., Roohi, V., Fadaei, A., & Zafari, H. (2015). Effect of exogenous putrescine and Aloe vera gel coating on post-harvest life of strawberry (Fragaria ananassa ) fruit, cultivar Kamarosa International Journal of Agriculture and Crop Sciences, 8, 578–584.
  64. Zahedi, S. M., Sadat Hosseini, M., Karimi, M., & Ebrahimzadeh, A. (2019). Effects of postharvest polyamine application and edible coating on maintaining quality of mango (Mangifera indica) cv. Langra during cold storage. Food Science & Nutrition, 7, 433-441. https://doi.org/10.1002/fsn3.802
  65. Zapata, P. J., Guillén, F., Martínez-Romero, D., Castillo, S., Valero, D., & Serrano, M. (2008). Use of alginate or zein as edible coatings to delay postharvest ripening process and to maintain tomato (Solanum lycopersicon Mill) quality. Journal of the Science of Food and Agriculture, 88(7), 1287-1293. https://doi.org/10.1002/jsfa.3220
CAPTCHA Image