Document Type : Research Article-en

Authors

1 ,Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24 St., Haraz Av. Amol, Iran.

2 Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24 St., Haraz Av. Amol, Iran.

Abstract

The objective of this study was to improve the survival of lactic acid bacteria (LAB) in Tarhana soup as a non-dairy matrix. Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophiles were encapsulated in electrospun nanofiber mats fabricated from corn starch (CS) and sodium alginate (SA) and the protective effect of the nanofibers were investigated on the cells during the preparation of Tarhana and in the gastrointestinal tract. The moisture content of the control and nanofiber- loaded dried Tarhana samples was 8.75 and 8.71%, respectively; therefore, using nanofiber mats in the formulation had no significant effect 
on the moisture content of the samples. A negative zeta potential value of -15.1 mV was found for LAB- loaded nanofibers. The nanofibers mats prepared from SA and CS mix showed a bead- free and clean structure with uniformity in size. The diameter size of most of the fibers ranged from 175- 338 with an average of 265 nm. Loading nanofiber mats with L. delbrueckii subsp. bulgaricus and S. thermophilus cells led to a uniform distributed beaded structure and the average diameter enhanced to approximately 763 nm. The viability of L. delbrueckii and S. thermophilus at the end of the electrospinning process was 92.82% and 95.83%, respectively, which indicating a slight loss in their population. Survival of nanoencapsulated S. thermophilus and L. delbrueckii was 93.50% and 89.16% respectively, while for free cells it was 85.3 and 76.4% that showed considerable protective effect of CS/SA fibers on the cells against dehydration of Tarhana medium. Nanofiber mats improved the stability of the cells against ordinary heat treatment used in preparing Tarhana soup. The survival rate of S. thermophilus was higher than L. delbrueckii subsp. bulgaricus and a significant difference was observed between the viability of free and nanoencapsulated bacteria. The survival of CS/SA nanoencapsulated S. thermophilus and L. delbrueckii subsp. bulgaricus was 83.25% and 80.21%, respectively, which is indicative of the significant protective effect of fibers on the cells against the heating process. The nanofibers also provided good stability for the cells in the gastrointestinal tract as 106 to 107 CFUg-1 of the cells were survived which is within the recommended level of potential probiotic dose to be effective. There was no significant difference in the color of all samples. Nanoencapsulation in CS/ SA nanofiber mats improved the protection of both LAB strains in simulated fluids of the stomach and intestine (Table 4). After continuous exposure to simulated gastrointestinal fluid, a significant loss of viable free LAB cells (higher than 4 log CFU/ml) was found while the population of S. thermophilus and L. delbrueckii subsp. bulgaricus encapsulated in CS/ SA nanofibers decreased only 0.45 and 0.37 log CFU after 120 min (p> 0.01), 0.93 and 0.80 log CFU after 180 min (p< 0.01), respectively. Tarhana soup prepared with probiotic– loaded nanofibers gained higher scores in terms of consistency, mouth feel, odor, taste, flavor, and overall acceptability attributes. Tarhana soup with nanofibers possessed much sour taste and flavor than samples prepared with free cells of probiotics. The results of the present study indicated that the protection obtained from CS/ SA capsules secured around106 to 107 CFU/g of the probiotic cells which are within the recommended level of probiotic dose to be functional in consumers’ body. Therefore, this product can be used by the consumers like vegetarians and lactose or milk peptide intolerants who do not consume dairy products but need potential fermented probiotic food.
 

Keywords

Main Subjects

  1. Akbar, Z., Zahoor, T., Huma, N., Jamil, A., Ayesha, H., & JM, K. I. (2018). Electrospun probiotics: an alternative for encapsulation. Journal of biological regulators and homeostatic agents, 32(6), 1551-1556.
  2. Albadran, H. A., Chatzifragkou, A., Khutoryanskiy, V. V., & Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 208-216.
  3. AOAC. (2006). Official methods of analysis of the Association of Official Analytical Chemists. Retrieved from
  4. Atraki, R., & Azizkhani, M. (2021). Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. Innovative Food Science & Emerging Technologies, 72, 102750. https://doi.org/10.1016/j.ifset.2021.102750
  5. Bilenler, T., Karabulut, I., & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT, 75, 425-433. https://doi.org/10.1016/j.lwt.2016.09.003
  6. Bora, A. F. M., Li, X., Zhu, Y., & Du, L. (2019). Improved viability of microencapsulated probiotics in a freeze-dried banana powder during storage and under simulated gastrointestinal tract. Probiotics and antimicrobial proteins, 11(4), 1330-1339. https://doi.org/10.1007/s12602-018-9464-1
  7. Borumand, M. R. (2013). Preparation and characterization of sodium alginate nanoparticles containing ICD-85 (venom derived peptides). International journal of innovation and applied studies, 4(3), 534-542.
  8. Chen, J., Wang, Q., Liu, C.-M., & Gong, J. (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Critical reviews in food science and nutrition, 57(6), 1228-1238. https://doi.org/10.1080/10408398.2014.977991
  9. Coghetto, C. C., Brinques, G. B., & Ayub, M. A. Z. (2016). Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. International journal of food sciences and nutrition, 67(8), 929-943. https://doi.org/10.1080/09637486.2016.1211995
  10. de Araújo Etchepare, M., Raddatz, G. C., de Moraes Flores, É. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., . . . de Menezes, C. R. (2016). Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Science and Technology, 65, 511-517.
  11. Dean, S. N., Leary, D. H., Sullivan, C. J., Oh, E., & Walper, S. A. (2019). Isolation and characterization of Lactobacillus-derived membrane vesicles. Scientific reports, 9(1), 1-11. https://doi.org/10.1038/s41598-018-37120-6
  12. Demirci, A. S., Palabiyik, I., Ozalp, S., & Tirpanci Sivri, G. (2019). Effect of using kefir in the formulation of traditional Tarhana. Food Science and Technology, 39(2), 358-364. https://doi.org/10.1590/fst.29817 
  13. Dianawati, D., Mishra, V., & Shah, N. P. (2016). Survival of microencapsulated probiotic bacteria after processing and during storage: a review. Critical reviews in food science and nutrition, 56(10), 1685-1716. https://doi.org/10.1080/10408398.2013.798779
  14. Donthidi, A., Tester, R. F., & Aidoo, K. E. (2010). Effect of lecithin and starch on alginate-encapsulated probiotic bacteria. Journal of microencapsulation, 27(1), 67-77. https://doi.org/10.3109/02652040902982183
  15. Elizaquível, P., Sánchez, G., Salvador, A., Fiszman, S., Dueñas, M. T., López, P., . . . Aznar, R. (2011). Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1, 3)-β-D-glucan. Journal of Dairy Science, 94(7), 3271-3278. https://doi.org/10.3168/jds.2010-4026
  16. Fareez, I. M., Lim, S. M., Mishra, R. K., & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International journal of biological macromolecules, 72, 1419-1428. https://doi.org/10.1016/j.ijbiomac.2014.10.054
  17. Grom, L., Rocha, R., Balthazar, C., Guimarães, J., Coutinho, N., Barros, C., . . . Silva, P. (2020). Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? Journal of Dairy Science, 103(2), 1110-1119. https://doi.org/10.3168/jds.2019-17401
  18. Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? British Journal of Nutrition, 93(6), 783-786. https://doi.org/10.1079/BJN20051428
  19. Hotel, A. C. P., & Cordoba, A. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1-10.
  20. Ji, R., Wu, J., Zhang, J., Wang, T., Zhang, X., Shao, L., . . . Wang, J. (2019a). Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Frontiers in microbiology, 10, 1389.
  21. Ji, R., Wu, J., Zhang, J., Wang, T., Zhang, X., Shao, L., . . . Wang, J. (2019b). Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01389
  22. Kamel, D. G., Gomma, N. H., Osman, D. M., & Hassan, A. (2018). Effect of Water Activity on Growth of Certain Lactic Acid Bacteria. Journal of Food and Dairy Sciences, 2018, 97-102. DOI: 21608/jfds.2018.77762
  23. Karovičová, Z. K.-J., & Kohajdova, J. (2007). Fermentation of cereals for specific purpose. Journal of Food and Nutrition Research, 46(2), 51-57.
  24. Kiani, A., Nami, Y., Hedayati, S., Jaymand, M., Samadian, H., & Haghshenas, B. (2021). Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-92095-1
  25. Lancuški, A., Ammar, A. A., Avrahami, R., Vilensky, R., Vasilyev, G., & Zussman, E. (2017). Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydrate polymers, 158, 68-76. https://doi.org/10.1016/j.carbpol.2016.12.003
  26. Liu, H., Cui, S. W., Chen, M., Li, Y., Liang, R., Xu, F., & Zhong, F. (2019). Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: a review. Critical reviews in food science and nutrition, 59(17), 2863-2878. https://doi.org/10.1080/10408398.2017.1377684
  27. Liu, H., Gong, J., Chabot, D., Miller, S. S., Cui, S. W., Zhong, F., & Wang, Q. (2018). Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocolloids, 78, 100-108. https://doi.org/10.1016/j.foodhyd.2017.07.004
  28. López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28(1), 159-167. https://doi.org/10.1016/j.foodhyd.2011.12.008
  29. Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3), e03541. https://doi.org/10.1016/j.heliyon.2020.e03541
  30. Mater, D. D., Bretigny, L., Firmesse, O., Flores, M.-J., Mogenet, A., Bresson, J.-L., & Corthier, G. (2005). Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiology Letters, 250(2), 185-187. https://doi.org/10.1016/j.femsle.2005.07.006
  31. Mirzaei, H., Pourjafar, H., & Homayouni Rad, A. (2011). The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. Journal of Veterinary Research, 66(4), 337-342.
  32. Murga, M. a. L. F., de Valdez, G. F., & Disalvo, A. b. E. (2000). Changes in the surface potential of Lactobacillus acidophilus under freeze–thawing stress. Cryobiology, 41(1), 10-16. https://doi.org/10.1006/cryo.2000.2259
  33. Nyanzi, R., Jooste, P. J., & Buys, E. M. (2021). Invited review: Probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. Journal of Dairy Science, 104(1), 1-19. https://doi.org/10.3168/jds.2020-19116
  34. Ozdemir, S., Gocmen, D., & Yildirim Kumral, A. (2007). A traditional Turkish fermented cereal food: Tarhana. Food Reviews International, 23(2), 107-121. https://doi.org/10.1080/87559120701224923
  35. Pérez, P. F., Minnaard, Y., Disalvo, E. A., & De Antoni, G. L. (1998). Surface properties of bifidobacterial strains of human origin. Applied and environmental microbiology, 64(1), 21-26. DOI: https://doi.org/10.1128/AEM.64.1.21-26.1998
  36. Ramírez, C., Millon, C., Nunez, H., Pinto, M., Valencia, P., Acevedo, C., & Simpson, R. (2015). Study of effect of sodium alginate on potato starch digestibility during in vitro digestion. Food Hydrocolloids, 44, 328-332. https://doi.org/10.1016/j.foodhyd.2014.08.023
  37. Robinson, M. R., Coustel, R., Abdelmoula, M., & Mallet, M. (2020). As (V) and As (III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. Science and Technology of Advanced Materials, 21(1), 524-539. https://doi.org/10.1080/14686996.2020.1782714
  38. Shori, A. B. (2017). Microencapsulation improved probiotics survival during gastric transit. HAYATI Journal of Biosciences, 24(1), 1-5. https://doi.org/10.1016/j.hjb.2016.12.008
  39. Škrlec, K., Zupančič, Š., Mihevc, S. P., Kocbek, P., Kristl, J., & Berlec, A. (2019). Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. European Journal of Pharmaceutics and Biopharmaceutics, 136, 108-119. https://doi.org/10.1016/j.ejpb.2019.01.013
  40. Sridharan, S., & Das, K. M. S. (2019). A Study on Suitable Non Dairy Food Matrix for Probiotic Bacteria–A Systematic Review. Current Research in Nutrition and Food Science Journal, 7(1), 05-16.
  41. Teoh, P. L., Mirhosseini, H., Mustafa, S., Hussin, A. S. M., & Abdul Manap, M. Y. (2011). Recent approaches in the development of encapsulated delivery systems for probiotics. Food Biotechnology, 25(1), 77-101. https://doi.org/10.1080/08905436.2011.547332
  42. Vogel, R., Pal, A. K., Jambhrunkar, S., Patel, P., Thakur, S. S., Reátegui, E., . . . Broom, M. F. (2017). High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Scientific reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-14981-x
  43. Wang, S., Yang, C., Tu, H., Zhou, J., Liu, X., Cheng, Y., . . . Xu, J. (2017). Characterization and metabolic diversity of flavonoids in citrus species. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-10970-2
  44. Yasmin, I., Saeed, M., Pasha, I., & Zia, M. A. (2019). Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(2), 413-426. https://doi.org/10.1007/s12602-018-9407-x
  45. Yeung, T. W., Üçok, E. F., Tiani, K. A., McClements, D. J., & Sela, D. A. (2016). Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in microbiology, 7, 494. https://doi.org/10.3389/fmicb.2016.00494
  46. Yilmaz, A., Bozkurt, F., Cicek, P. K., Dertli, E., Durak, M. Z., & Yilmaz, M. T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science & Emerging Technologies, 37, 74-83. https://doi.org/10.1016/j.ifset.2016.08.008
  47. Yilmaz, M. T., Taylan, O., Karakas, C. Y., & Dertli, E. (2020). An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers, 116447. https://doi.org/10.1016/j.carbpol.2020.116447
  48. Zendeboodi, F., Khorshidian, N., Mortazavian, A. M., & da Cruz, A. G. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103-123. https://doi.org/10.1016/j.cofs.2020.03.009
  49. Zhou, K., Cui, T., Li, P., Liang, N., Liu, S., Ma, C., & Peng, Z. (2008). Modelling and predicting the effect of temperature, water activity and pH on growth of Streptococcus iniae in Tilapia. Journal of applied microbiology, 105(6), 1956-1965. https://doi.org/10.1111/j.1365-2672.2008.03969.x
  50. Zupančič, Š., Škrlec, K., Kocbek, P., Kristl, J., & Berlec, A. (2019). Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly (ethylene oxide) nanofibers. Pharmaceutics, 11(9), 483. https://doi.org/10.3390/pharmaceutics11090483
CAPTCHA Image