نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 گروه علوم دامی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

هدف از انجام این پژوهش، شناسایی گونه‌های سالمونلا در فرآورده‌های مرغ با تکیه بر روش Real time PCR است. بدین منظور، تعداد 45 نمونه از فرآورده‌های ماکیان که شامل سینه، کبد و سنگدان مرغ بودند از نقاط مختلف شهر مشهد و از شرکت‌های گوناگون خریداری و با رعایت موازین بهداشتی به آزمایشگاه انتقال داده شدند. طبق استانداردهای ایران و بین‌المللی، در 25 گرم از ماده غذایی، نباید هیچ سالمونلایی وجود داشته باشد. بدین منظور، 25 گرم از هر یک از نمونه‌ها جدا شده و تحت شرایط استریل به‌خوبی هموژن شدند و استخراج DNA صورت گرفت. به‌منظور تایید، DNA استخراج شده توسط الکتروفورز ژل آگارز مورد ارزیابی قرار گرفت. خلوص و کمیت DNA استخراج شده هر یک از نمونه‌ها توسط طیف‌سنجی نوری مورد بررسی قرار گرفت. در مرحله بعد به‎منظور شناسایی جنس سالمونلا، نمونه‎ها ‎توسط روشReal time PCR  مورد بررسی قرار گرفتند. نتایج حاصل از Real time PCR نشان داد که از مجموع 45 نمونه، 9 نمونه آلوده به جنس سالمونلا می‌باشد. سپس این 9 نمونه، از نظر آلودگی به گونه‌های سالمونلا تیفی موریوم و سالمونلا انتریتیدیس مورد ارزیابی قرار گرفتند که برای این منظور از روش PCR معمولی استفاده شد. نتایج نشان داد از تعداد 9 نمونه که در تست Real time PCR مثبت تشخیص داده شده بود، تعداد 7 نمونه آلوده به سالمونلا تیفی موریوم بوده که از این 7 نمونه، 5 مورد مربوط به سینه مرغ و 2 مورد مربوط به کبد بود و از نظر آلودگی به سالمونلا انتریتیدیس از تعداد 9 نمونه، تنها یک نمونه آلوده بود که مربوط به سینه مرغ می‌باشد.

کلیدواژه‌ها

موضوعات

  1. Alcamo, E. (1997): Fundamentals of microbiology. 5th edit. P: 235-238.
  2. Andrews H and Hammack, T. S. “Chapter 5: Salmonella,” in (Food and Drug Administration) Bacteriological Analytical Manual Online, (2003), http://www.cfsan.fda.gov/∼ebam/bam-5.html.
  3. Apfalter, P., Barousch, W., Nehr, M., Makristathis, A., Willinger, B., Rotter, M., & Hirschl, A. M. (2003). Comparison of a new quantitative ompA-based real-time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. Journal of clinical microbiology, 41(2), 592-600. https://doi.org/10.1128/JCM.41.2.592-600.2003
  4. Azizpour, A., Judri, S. (2018), investigating the prevalence of Salmonella serotypes in animal feed and their drug resistance to common antibiotics in medical centers. Comparative pathobiology, scientific research, year 16, spring, number 1, pp. 2758-2751. (In Persian)
  5. Bejai Al-Zhaibi, A., Yahya Raiit, R., Neyri Fasai, B., Qalianchi Langroudi, A., Zahrai Salehi, T., (2018), identification and differentiation of serovars of Salmonella enteritidis, Salmonella pleurum, Salmonella gallinarum and Salmonella Dublin using Genome-specific multiplexing test. Iranian Journal of Veterinary Medicine. Volume 13, pp. 131-142. (In Persian)
  6. Ben Hassena, A., Barkallah, M., Fendri, I., Grosset, N., Ben Neila, I., Gautier, M., Gdour, R. (2015). Real time PCR gene profiling and detection of Salmonella using a novel target: The siiA Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2014.11.018
  7. Bennet, A. R., Greenqood, D., Tannant, C., Banks, J. G., Betts, R. R. (1998). Rapid and definitive detection of salmonella in foods By PCR. Lett .microbial. 26 .437.441. https://doi.org/10.1046/j.1472-765X.1998.00368.x
  8. Borges, K. A., Martelo, E. B., Dos Santos, L. A., Furian, T. Q., Cisco, I. C., Manto, L., & Dos Santos, L. R. (2019). Detection and quantification of Salmonella spp. in poultry slaughterhouses of southern Brazil. The Journal of Infection in Developing Countries, 13(05), 455-460.
  9. Boyd, E. F., Li, J., Ochman, H., & Selander, R. K. (1997). Comparative genetics of the inv-spa invasion gene complex of Salmonella enterica. Journal of Bacteriology, 179, 1985–1991. https://doi.org/10.1128/jb.179.6.1985-1991.1997
  10. Chen, S., Wang, F., Beaulieu, J. C., Stein, R. E., & Ge, B. (2011). Rapid detection of viable Salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Applied and Environmental Microbiology, 77, 4008–4016. https://doi.org/10.1128/AEM.00354-11
  11. Chen, S., Yee, A., Griffiths, M., Larkin, C., Yamashiro, C. T., Behari, R., .. & Stephanie, A. (1997). The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. International journal of food microbiology, 35(3), 239-250.
  12. Cheng, C. M., Lin, W., Van, K. T., Phan, L., Tran, N. N., & Farmer, D. (2008). Rapid detection of Salmonella in foods using real-time PCR. Journal of food protection, 71(12), 2436-2441.
  13. Cowden, J. M., O'mahony, M., Bartlett, C. L. R., Rana, B., Smyth, B., Lynch, D., ... & Kilsby, D. C. (1989). A national outbreak of Salmonella typhimurium DT 124 caused by contaminated salami sticks. Epidemiology & Infection, 103(2), 219-225. https://doi.org/10.1017/S0950268800030569
  14. D’Aoust, J.Y and Purvis, U. (1998). Isolation an identification of salmonella from foods. MFHPB-20. Health Protection Branch, Health Canada, Ottawa, Canada. p:145-230.
  15. Davis, R. H., Nicholas, R. A,. Mclaren, L. M., Corkish ,J. D., Laning, D, G., Wary, C. (1998). Bacteriologcal and serological investigation of persistent Salmonella enteritidis infection in an integrated poultry organization. Vet. Microb. 58(2-4):277-293. https://doi.org/10.1016/S0378-1135(97)00157-0
  16. Doran, J. L., Collinson, S. K., Burian, J., Sarlos, G., Todd, E. C., Munro, C. K., ... & Kay, W. W. (1993). DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. Journal of clinical microbiology, 31(9), 2263-2273. https://doi.org/10.1128/jcm.31.9.2263-2273.1993
  17. EC, C. R. (2005). Microbiological criteria for foodstuffs. Official Journal of the European Union, 338, 1-29.
  18. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and, & Control). (2015). Trends and sources of zoonoses, zoonotic agents and food-borne. EFSA Journal, 13(1), 162.
  19. Ferretti, R., Mannazzu, I., Cocolin, L., Comi, G., & Clementi, F. (2001). Twelve-hour PCR-based method for detection of Salmonella spp. in food. Applied and Environmental Microbiology, 67(2), 977-978. https://doi.org/10.1128/AEM.67.2.977-978.2001
  20. Galán, J. E., & Curtiss 3rd, R. (1991). Distribution of the invA,-B,-C, and-D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infection and immunity, 59(9), 2901-2908. https://doi.org/10.1128/iai.59.9.2901-2908.1991.
  21. Hashimoto, Y., Itho, Y., Fujinaga, Y., Khan, A. Q., Sultana, F., Miyake, M., ... & Ezaki, T. (1995). Development of nested PCR based on the ViaB sequence to detect Salmonella typhi. Journal of Clinical Microbiology, 33(3), 775-777. https://doi.org/10.1128/jcm.33.3.775-777.1995.
  22. Hoorfar, J., Ahrens, P., & Rådstrom, P. (2000). Automated 5′ nuclease PCR assay for identification of Salmonella enterica. Journal of clinical microbiology, 38(9), 3429-3435.
  23. Iida, K., Abe, A., Matsui, H., Danbara, H., Wakayama, S., & Kawahara, K. (1993). Rapid and sensitive method for detection of Salmonella strains using a combination of polymerase chain reaction and reverse dot-blot hybridization. FEMS microbiology letters, 114(2), 167-172. https://doi.org/10.1111/j.1574-6968.1993.tb06568.x.
  24. Josephson, K. L., Gerba, C. P., & Pepper, I. (1993). Polymerase chain reaction detection of nonviable bacterial pathogens. Applied and Environmental Microbiology, 59(10), 3513-3515. https://doi.org/10.1128/aem.59.10.3513-3515.1993
  25. Knutsson, R., Löfström, C., Grage, H., Hoorfar, J., & Rådström, P. (2002). Modeling of 5′ nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica. Journal of Clinical Microbiology, 40(1), 52-60. https://doi.org/10.1128/JCM.40.1.52-60.2002
  26. Kurowski, P. B., Traub-Dargatz, J. L., Morley, P. S., & Gentry-Weeks, C. R. (2002). Detection of Salmonella spp in fecal specimens by use of real-time polymerase chain reaction assay. American journal of veterinary research, 63(9), 1265-1268.
  27. Le Minor, L. (1981).The Genus salmonella, In M.P.Stolp(ed), The Prokaryotes Springer-Verlag,New York, N. Y. P:1148-1156.
  28. Liljebjelke, K. A., Hofacre, C. L., Liu, T., White, D. G., Ayers, S., Young, S., & Maurer, J. J. (2005). Vertical and horizontal transmission of Salmonella within integrated broiler production system. Food borne Pathogens & Disease, 2(1), 90-102. https://doi.org/10.1089/fpd.2005.2.90
  29. Mahon, J., & Lax, A. J. (1993). A quantitative polymerase chain reaction method for the detection in avian faeces of salmonellas carrying the spvR gene. Epidemiology & Infection, 111(3), 455-464. https://doi.org/10.1017/S0950268800057186.
  30. Malorny, B., Hoorfar, J., Bunge, C., & Helmuth, R. (2003). Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Applied and environmental microbiology, 69(1), 290-296. https://doi.org/10.1128/AEM.69.1.290-296.2003
  31. Malorny, B., Hoorfar, J., Hugas, M., Heuvelink, A., Fach, P., Ellerbroek, L., ... & Helmuth, R. (2003). Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. International journal of food microbiology, 89(2-3), 241-249. https://doi.org/10.1016/S0168-1605(03)00154-5.
  32. Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A., & Helmuth, R. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Applied and environmental microbiology, 70(12), 7046-7052. https://doi.org/10.1128/AEM.70.12.7046-7052.2004
  33. McGuinness, S., Barry, T., & O'Grady, J. (2010). Development and preliminary validation of a real-time RT-PCR based method targeting tmRNA for the rapid and specific detection of Salmonella. Food Research International, doi:10.1016/j.foodres.2010.08.012.
  34. Moghadam, A., Nazarian, Sh., Amani, J. 2017. Identification and investigation of Salmonella Typhimurium, Infantis and Enteritidis serotypes in clinical samples from medical centers in Kerman province. Iranian Journal of Medical Microbiology, 11(2), pp. 1-8. (In Persian).
  35. Momtaz H, Ghaedamini M, Momeni M. Detection of virulence factors in Salmonella typhimurium and Salmonella enteritidis serotypes isolated from chicken meat in Chaharmahal va Bakhtiari Province of Iran. J food Microbiol. 2014; 1(1): 17-22.
  36. Monadi, M., Kargar, M., Naghiha, A., and Mohammadi, R. 2012. Determining Salmonella contamination of native eggs in Kohgiluyeh and Boyer Ahmad provinces using PCR technique and evaluating drug resistance. Armaghane Danesh, 19(2), pp. 179-187. (In Persian).
  37. Morsali, H., Asaadi, H., Yazdansetad, S., & Najafpour, R. (2017). Optimization of a Multiplex PCR for Simultaneous Detection of Foodborne Pathogens Salmonella spp. and Escherichia coli O157: H7 and Contamination Prevalence Assay in Meat Products. Journal of Arak University of Medical Sciences, 20(6), 83-93.
  38. Mortazavi, A., Kashani-nejad, M., Zia-ul-Haq, S. H. 1993. Food Microbiology. pp. 184 to 185. (In Persian).
  39. Navarro, E., Serrano-Heras, G., Castaño, M. J., & Solera, J. J. C. C. A. (2015). Real-time PCR detection chemistry. Clinica chimica acta, 439, 231-250. https://doi.org/10.1016/j.cca.2014.10.017
  40. Paião G, ArisitidesI L.G.A, MurateI L.S, Vilas-BôasII G.T, Vilas-BoasII L.A., ShimokomakiI M. 2013.Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-83822013005000002
  41. Rad, M; Kalidri, Gh; Kurdjezi, Sh. Identification of different species of Salmonella in the center of domestic chicken breeding. Research and construction. 2008, period 21, number 4. pp. 87 to 93. (In Persian)
  42. Riyaz-Ul-Hassan, S., Verma, V., & Qazi, G. N. (2004). Rapid detection of Salmonella by polymerase chain reaction. Molecular and cellular probes, 18(5), 333-339. https://doi.org/10.1016/j.mcp.2004.05.003
  43. Rodríguez-Lázaro, D., Cook, N., & Hernández, M. (2013). Real-time PCR in food science: PCR diagnostics. Current Issues in Molecular Biology, 15(2), 39-44. https://doi.org/10.21775/cimb.015.039
  44. Sachse, K. 2003. Specificity and performance of diagnostic PCR assays. Methods Mol. Biol. 216:3–29. https://doi.org/10.1385/1-59259-344-5:03
  45. SD, Shashidhar. R, Karani. M, Bandekar. JR, Rapid, sensitive, and validated method for detection of Salmonella in food by an enrichment broth culture - nested PCR combination assay. Mol Cell Probes. 2008; 22(3): 201-6. https://doi.org/10.1016/j.mcp.2008.02.002
  46. Siala, M., Barbana, A., Smaoui, S., Hachicha, S., Marouane, C., Kammoun, S., ... & Messadi-Akrout, F. (2017). Screening and detecting Salmonella in different food matrices in Southern Tunisia using a combined enrichment/real-time PCR method: correlation with conventional culture method. Frontiers in microbiology, 8, 2416. https://doi.org/10.3389/fmicb.2017.02416
  47. Soradeghi Topkanlou, A., Shahidi, F., Javadmanesh, A., Mortazavi, A., Veridi, M., J., Roshank, S. 2021. Isolation and identification of microbial agents causing yellow spot in chicken sausage by culture and molecular methods. Iranian journal of food science and industry. 18 (114): pp. 1 to 14. (In Persian)
  48. Vichaibun, V., & Kanchanaphum, P. (2020). Quantitative LAMP and PCR Detection of Salmonella in Chicken Samples Collected from Local Markets around Pathum Thani Province, Thailand. International journal of food science, 8833173. https://doi.org/10.1155/2020/8833173
  49. Whyte P, Mc Gill K, Collins JD, Gormley E. (2002). The prevalence and PCR detection of Salmonella contamination in raw poultry. Vet Microbiol. 2;89(1):53-60. https://doi.org/10.1016/S0378-1135(02)00160-8
  50. Zeng, D., Chen, Z., Jiang, Y., Xue, F., & Li, B. (2016). Advances and Challenges in Viability Detection of Foodborne Pathogens. Frontiers in microbiology, 7, 1833. https://doi.org/10.3389/fmicb.2016.01833

 

CAPTCHA Image