Document Type : Research Article-en

Authors

Department of Food and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Mashhad

Abstract

Preparing air-in-oil-in-water (A/O/W) double emulsion involves two key steps: oleofoam formation and dispersion of the oleofoam in an aqueous solution containing protein as an emulsifier and hydrocolloid as a thickening agent. This study aimed to investigate the effect of oleofoam level and varying concentrations of protein-polysaccharide ratios on the thermal stability, encapsulation yield and rheological properties of A/O/W double emulsion. An oleofoam was obtained using a lipophilic emulsifier (distilled monoglyceride MG) and sunflower oil at 5°C with maximum stability. Two levels of oleofoam (20% and 25 wt %) were added to an aqueous solution containing different concentrations of sodium caseinate (SC) (5, 8, and 10 wt %) and kappa carrageenan (KC) (0.4 and 0.8 wt %). Results indicate that oleofoam level did not significantly affect air encapsulation efficiency and particle size, while protein-polysaccharide ratios could significantly impact all properties of A/O/W double emulsion. Increasing the concentration of sodium caseinate and kappa carrageenan improved thermal stability and encapsulation yield while simultaneously reducing particle size. All A/O/W emulsions exhibited shear thinning behavior among the range of shear rates studied, indicating significant potential for food applications.

Keywords

Main Subjects

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aserin, A. (Ed.). (2007). Multiple emulsion: technology and applications. John Wiley & Sons.
  2. Alhasan, F.H., Tehrani, M.M., & Varidi, M. (2023). Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics. Food Chemistry, X, 101033. https://doi.org/10.1016/j.fochx.2023.101033
  3. Binks, B.P., & Marinopoulos, I. (2017). Ultra-stable self-foaming oils. Food Research International, 95, 28-37. https://doi.org/10.1016/j.foodres.2017.02.020
  4. Binks, B.P., & Vishal, B. (2021). Particle-stabilized oil foams. Advances in Colloid and Interface Science, 291, 102404. https://doi.org/10.1016/j.cis.2021.102404
  5. Brun, M., Delample, M., Harte, E., Lecomte, S., & Leal-Calderon, F. (2015). Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Research International67, 366-375. https://doi.org/10.1016/j.foodres.2014.11.044
  6. Callau, M., Sow-Kébé, K., Jenkins, N., & Fameau, A.L. (2020). Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chemistry333, 127403. https://doi.org/10.1016/j.foodchem.2020.127403
  7. Fameau, A.L., & Binks, B.P. (2021). Aqueous and oil foams stabilized by surfactant crystals: New concepts and perspectives. Langmuir37(15), 4411-4418. https://doi.org/10.1021/acs.langmuir.1c00410
  8. Fameau, A.L., Carl, A., Saint‐Jalmes, A., & Von Klitzing, R. (2015). Responsive aqueous foams. ChemPhysChem16(1), 66-75. https://doi.org/10.1002/cphc.201402580
  9. Goibier, L., Pillement, C., Monteil, J., Faure, C., & Leal-Calderon, F. (2019). Emulsification of nonaqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids. Food Chemistry293, 49-56. https://doi.org/10.1016/j.foodchem.2019.04.080
  10. Lei, M., Zhang, N., Lee, W.J., Tan, C.P., Lai, O.M., Wang, Y., & Qiu, C. (2020). Nonaqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chemistry312, 126047. https://doi.org/10.1016/j.foodchem.2019.126047
  11. Li, J., Zhu, Y., & Teng, C. (2017). The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal Food Science Technology, 54, 469–480. https://doi.org/10.1007/s13197-017-2488-9
  12. Lin, C., Kebebew Debeli, D., Gan, L., Deng, J., Hu, L., Shan, G. (2020). Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.127381
  13. Liu, Y., & Binks, B.P. (2021). A novel strategy to fabricate stable oil foams with sucrose ester surfactant. Journal of Colloid and Interface Science, 594, 204-216. https://doi.org/10.1016/j.jcis.2021.03.021
  14. Liu, Y., & Binks, B.P. (2022). Fabrication of stable oleofoams with sorbitan ester surfactants. Langmuir38(48), 14779-14788. https://doi.org/10.1021/acs.langmuir.2c02413
  15. Lu, Y., Zhang, B., Shen, H., Ge, X., Sun, X., Zhang, Q., & Li, W. (2021). Sodium caseinate and acetylated mung bean starch for the encapsulation of lutein: Enhanced solubility and stability of lutein. Foods11(1), 65. https://doi.org/10.3390/foods11010065
  16. Mishra, K., Bergfreund, J., Bertsch, P., Fischer, P., & Windhab, E.J. (2020). Crystallization-induced network formation of tri-and monopalmitin at the middle-chain triglyceride oil/air interface. Langmuir, 36(26), 7566-7572. https://doi.org/10.1021/acs.langmuir.0c01195
  17. Mollakhalili Meybodi, N., Mohammadifar, M.A., & Abdolmaleki, K.H. (2014). Effect of dispersed phase volume fraction on physical stability of oil-in-water emulsion in the presence of gum tragacanth. Journal of Food Quality and Hazards Control1(4), 102-107.
  18. Murray, B.S. (2020). Recent developments in food foams. Current Opinion in Colloid & Interface Science50, 101394. https://doi.org/10.1016/j.cocis.2020.101394
  19. O’Regan, J., & Mulvihill, D.M. (2010). Sodium caseinate–maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Research International43(1), 224-231. https://doi.org/10.1016/j.foodres.2009.09.031
  20. Paraskevopoulou, A., Boskou, D., & Kiosseoglou, V. (2005). Stabilization of olive oil–lemon juice emulsion with polysaccharides. Food Chemistry90(4), 627-634. https://doi.org/10.1016/j.foodchem.2004.04.023
  21. Perrechil, F.A., & Cunha, R.L. (2010). Oil-in-water emulsions stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition. Journal of Food Engineering97(4), 441-448. https://doi.org/10.1016/j.jfoodeng.2009.10.041
  22. Perrechil, F.A., Maximo, G.J., Sato, A.C.K., & Cunha, R.L. (2020). Microbeads of sodium caseinate and κ-carrageenan as a β-carotene carrier in aqueous systems. Food Bioprocess Technology, 13, 661–669. https://doi.org/10.1007/s11947-020-02426-9
  23. Perrechil, F.A., Maximo, G.J., & Sato, A.C.K. (2020).Microbeads of sodium caseinate and κ-Carrageenan as a β-carotene carrier in aqueous systems. Food Bioprocess Technology, 13, 661–669. https://doi.org/10.1007/s11947-020-02426-9.
  24. Qiu, C., Wang, S., Wang, Y., Lee, W.J., Fu, J., Binks, B.P., & Wang, Y. (2022). Stabilization of oleofoams by lauric acid and its glycerol esters. Food Chemistry386, 132776. https://doi.org/10.1016/j.foodchem.2022.132776
  25. Salonen, A. (2020). Mixing bubbles and drops to make foamed emulsions. Current Opinion in Colloid & Interface Science50, 101381. https://doi.org/10.1016/j.cocis.2020.08.006
  26. Saremnejad, F., Mohebbi, M., & Koocheki, A. (2020). Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce. Food and Bioproducts Processing119, 216-225. https://doi.org/10.1016/j.fbp.2019.11.004
  27. Seddari, S., & Moulai-Mostefa, N. (2015). Formulation and characterization of double emulsions stabilized by sodium caseinate–xanthan mixtures effect of pH and biopolymer concentration. Journal of Dispersion Science and Technology36(1), 51-60. https://doi.org/10.1080/01932691.2013.873867
  28. Sharma, M., Mann, B., Sharma, R., Bajaj, R., Athira, S., Sarkar, P., & Pothuraju, R. (2017). Sodium caseinate stabilized clove oil nanoemulsion: physicochemical properties. Journal of Food Engineering212, 38-46. https://doi.org/10.1016/j.jfoodeng.2017.05.006
  29. Tang, M.X., Zhu, Y.D., Li, D., Adhikari, B., & Wang, L.J. (2019). Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems. Lwt113, 108296. https://doi.org/10.1016/j.lwt.2019.108296
  30. Thanh Diep, T., Phan Dao, T., Vu, H.T., Quoc Phan, B., Ngoc Dao, D., Huu Bui, T., ... & Nguyen, V. (2018). Double emulsion oil-in water-in-oil (O/W/O) stabilized by sodium caseinate and k-carrageenan. Journal of Dispersion Science and Technology39(12), 1752-1757. https://doi.org/10.1080/01932691.2018.1462198
  31. Wei, P., Tan, Q., Uijttewaal, W., van Lier, J.B., & de Kreuk, M. (2018). Experimental and mathematical characterization of the rheological instability of concentrated waste-activated sludge subject to anaerobic digestion. Chemical Engineering Journal349, 318-326. https://doi.org/10.1016/j.cej.2018.04.108
  32. Wildmoser, H., Scheiwiller, J., & Windhab, E.J. (2004). Impact of disperse microstructure on rheology and quality aspects of ice cream. LWT-Food Science and Technology, 37(8), 881-891. https://doi.org/10.1016/j.lwt.2004.04.006
  33. Zhao, H., Zhou, F., Peng, W., Zheng, J., Dziugan, P., Zhang, B. (2015). The effects of κ-CG on the stability of reaching and the interactions between them. Food Hydrocolloids, 43, 763–8. httpa://doi.org/10.1016/j.foodhyd.2014.08.006
CAPTCHA Image