نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران
3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران
چکیده
آرد گندم یکی از مهمترین و استراتژیکترین منابع غذایی بهویژه در کشورهای در حال توسعه است. افزودن هیدروسولفیت سدیم به آرد برای بهبود برخی ویژگیهای ظاهری میتواند اثرات خطرناکی بر سلامت مصرفکننده داشته باشد. بنابراین تشخیص این ماده مضر از اهمیت عملی بالایی برخوردار است. در مطالعه حاضر، پتانسیل طیفسنجی مادون قرمز تبدیل فوریه (FT-MIR) در 400-4000 cm-1 برای تشخیص سریع پودر هیدروسولفیت سدیم در آرد گندم مورد بررسی قرار گرفت. پس از گرفتن دادههای طیفی از نمونهها، ابتدا از برخی روشهای پیشپردازش برای تصحیح اثرات مضر و ناخواسته بر دادههای طیفی استفاده شد و سپس از آنالیز مؤلفههای اصلی (PCA) بهعنوان مدل بدون نظارت و از مدلهای ماشینبردار بدون نظارت و پشتیبانی (SVM) و شبکه عصبی مصنوعی (ANN) بهعنوان مدلهای بانظارت استفاده شد. همچنین از مدل رگرسیون حداقل مربعات جزئی (PLSR) بهعنوان مدل رگرسیونی برای تشخیص و تعیین کمیت تقلب در نمونههای آرد خالص استفاده شد. بهترین نتایج بهترتیب بادقت 86.66 و 86.70 برای مدلهای SVM و ANN با پیشپردازش S-G + D2 + SNV و R2p = 0.99 برای مدل PLSR بود.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Application of FT-IR Spectroscopy with Various Classification and Regression Models for Detection and Quantification of Sodium Hydrosulfite in Iranian Wheat Flour
نویسندگان [English]
- Amir Kazemi 1
- Asghar Mahmoudi 1
- Mostafa Khojastehnazhand 2
- Seyyed Hassan Fattahi 3
1 Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran
2 Department of Mechanical Engineering, University of Bonab, Bonab, Iran
3 Department of Biosystems Engineering, University of Maragheh, Maragheh, Iran
چکیده [English]
Wheat flour is one of the most important and strategic food resources especially in developing countries. The addition of Sodium hydrosulfite to flour for improving some appearance features can have dangerous impacts on the consumer health. Therefore, detection of this harmful substance is great practical significance. In the present study, the potential of Fourier transform-mid infrared (FT-MIR) spectroscopy in 400-4000 cm-1 for the fast detection of Sodium hydrosulfite powder in wheat flour was investigated. After getting the spectral data from samples, firstly some preprocessing methods were used to correct harmful and unwanted effects on spectral data, and then Principal Component Analysis (PCA) as unsupervised and Support Vector Machine (SVM) and Artificial Neural Network (ANN) models as supervised classification models and Partial Least Square Regression (PLSR) as regression model were applied to detect and quantify the adulteration in pure flour samples. The best outcomes were the accuracy of 86.66 and 86.70 for SVM and ANN models with S-G + D2 + SNV preprocessing, respectively and R2p = 0.99 For PLSR model.
کلیدواژهها [English]
- Adulteration
- Chemometrics
- Sodium hydrosulfite
- Spectroscopy
- Wheat flour
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0). |
- Adams, M.L., Lombi, E., Zhao, F.J., & McGrath, S.P. (2002). Evidence of low selenium concentrations in UK bread‐making wheat grain. Journal of the Science of Food and Agriculture, 82(10), 1160-1165. https://doi.org/10.1002/jsfa.1167
- Ahamadabadi, M., Saeidi, M., Rahdar, S., Narooie, M.R., Salimi, A., Alipour, V., Biglari, H. (2016). Amount of baking soda and salt in the bread baked in city of zabol. Iioab Journal, 7, 518-522.
- Arslan, F. N., Akin, G., Karuk Elmas, Ş. N., Üner, B., Yilmaz, I., Janssen, H.-G., & Kenar, A. (2020). FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. Journal of Consumer Protection and Food Safety, 15, 245-261. https://doi.org/10.1007/s00003-019-01267-9
- Asgari, G., SeidMohammadi, A., Faradmal, J., Moradi, M.J., & Yari, K. (2018). The study of Blankit concentration as an unauthorized additive in hamadan bakeries and risk assessment of food consumption. Pajouhan Scientific Journal, 16(4), 21-27.
- Ballabio, D., & Todeschini, R. (2009). Multivariate classification for qualitative analysis Infrared spectroscopy for food quality analysis and control (pp. 83-104): Elsevier. https://doi.org/10.1016/B978-0-12-374136-3.00004-3
- Barak, P. (1995). Smoothing and differentiation by an adaptive-degree polynomial filter. Analytical Chemistry, 67(17), 2758-2762. https://doi.org/10.1021/ac00113a006
- Boysworth, M., & Booksh, K. (2008). Aspects of multivariate calibration applied to near-infrared spectroscopy. PRACTICAL SPECTROSCOPY SERIES, 35, 207.
- Chandrasekaran, I., Panigrahi, S. S., Ravikanth, L., & Singh, C. B. (2019). Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: An overview. Food Analytical Methods, 12, 2438-2458. https://doi.org/10.1007/s12161-019-01609-1
- Che, W., Sun, L., Zhang, Q., Zhang, D., Ye, D., Tan, W., Dai, C. (2017). Application of visible/near‐infrared spectroscopy in the prediction of azodicarbonamide in wheat flour. Journal of Food Science, 82(10), 2516-2525. https://doi.org/10.1111/1750-3841.13859
- Christy, A.A., & Kvalheim, O.M. (2007). Latent-variable analysis of multivariate data in infrared spectrometry. Near-infrared Spectroscopy in Food Science and Technology, 145-162. https://doi.org/10.1002/0470047704
- de Carvalho, L.M., & Schwedt, G. (2005). Sulfur speciation by capillary zone electrophoresis: Determination of dithionite and its decomposition products sulfite, sulfate and thiosulfate in commercial bleaching agents. Journal of Chromatography A, 1099(1-2), 185-190. https://doi.org/10.1016/j.chroma.2005.08.084
- De Girolamo, A., Cervellieri, S., Mancini, E., Pascale, M., Logrieco, A. F., & Lippolis, V. (2020). Rapid authentication of 100% italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods, 9(11), 1551. https://doi.org/10.3390/foods9111551
- Dhanoa, M., Lister, S., Sanderson, R., & Barnes, R. (1994). The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2(1), 43-47. https://doi.org/10.1255/jnirs.30
- Fletcher, T. (2009). Support vector machines explained. Tutorial paper, 1-19.
- Fodor, I.K. (2002). A survey of dimension reduction techniques. Retrieved from.
- GhR, J. K., Yunesian, M., Vaezi, F., Nabizadeh, R., & GhA, P. (2006). A survey on baking Soda elimination from Iranian flat breads in bakeries of Islamshahr city in 2005. Research Journal School Health, Yazd, 1(2), 21-31.
- Govaert, F., Temmerman, E., & Kiekens, P. (1999). Development of voltammetric sensors for the determination of sodium dithionite and indanthrene/indigo dyes in alkaline solutions. Analytica chimica acta, 385(1-3), 307-314. https://doi.org/10.1016/S0003-2670(98)00591-1
- Guzmán-Ortiz, F. A., Hernández-Sánchez, H., Yee-Madeira, H., San Martín-Martínez, E., Robles-Ramírez, M.D.C., Rojas-López, M., Mora-Escobedo, R. (2015). Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate. Journal of food science and technology, 52, 4066-4077. https://doi.org/10.1007/s13197-014-1485-5
- Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In I. T. Jolliffe (Ed.), Principal Component Analysis (pp. 115-128). New York, NY: Springer New York.
- Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316-325. https://doi.org/10.1016/j.ifset. 2012.07.007
- Karami, M., Alikord, M., Mokhtari, Z., Sadighara, P., & Jahed-Khaniki, G. (2021). Sodium Hydrosulfite (Blankit) in Iranian food as a threat to human health: a review. Journal of Food Safety and Hygiene. https://doi.org/10.18502/jfsh.v7i2.8398
- Kazemi, A., Mahmoudi, A., & Khojastehnazhand, M. (2023). Detection of sodium hydrosulfite adulteration in wheat flour by FT-MIR spectroscopy. Journal of Food Measurement and Characterization, 17(2), 1932-1939. https://doi.org/10.1007/s11694-022-01763-x
- Kazemi, A., Mahmoudi, A., Veladi, H., Javanmard, A., & Khojastehnazhand, M. (2022). Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. Journal of Food Measurement and Characterization, 16(3), 2400-2410. https://doi.org/10.1007/s11694-022-01352-y
- Lavigne-Delcroix, A., Tusseau, D., & Proix, M. (1996). Validation of a chromatographic chemiluminescence detector. Sciences des Aliments, 16, 267-280.
- Lohumi, S., Lee, S., Lee, H., & Cho, B.-K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology, 46(1), 85-98. https://doi.org/10.1016/j.tifs.2015.08.003
- López-Maestresalas, A., Insausti, K., Jarén, C., Pérez-Roncal, C., Urrutia, O., Beriain, M.J., & Arazuri, S. (2019). Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control, 98, 465-473. https://doi.org/10.1016/j.foodcont.2018.12.003
- Malakootian, M., & Dowlatshahi, S. (2005). The quality of the manufactured bread and hygienic conditions of bakeries. Journal of Environmental Health Science & Engineering, 2(2), 72-78.
- Martins, F.C., Sentanin, M.A., & De Souza, D. (2019). Analytical methods in food additives determination: Compounds with functional applications. Food Chemistry, 272, 732-750. https://doi.org/10.1016/j.foodchem.2018.08.060
- Martins, M.S., Nascimento, M.H., Barbosa, L.L., Campos, L.C., Singh, M.N., Martin, F.L., Barauna, V. G. (2022). Detection and quantification using ATR-FTIR spectroscopy of whey protein concentrate adulteration with wheat flour. LWT, 172, 114161. https://doi.org/10.1016/ j.lwt.2022.114161
- Mishra, P., Herrero-Langreo, A., Barreiro, P., Roger, J.M., Diezma, B., Gorretta, N., & Lleó, L. (2015). Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy, 23(1), 15-22.
- Mohamed, M.Y., Solihin, M.I., Astuti, W., Ang, C.K., & Zailah, W. (2019). Food powders classification using handheld near-infrared spectroscopy and support vector machine. Paper presented at the Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1367/1/012029
- Monnier, G., & Wiliams, S. (1972). Determination of sulfur dioxide. (AOAC Official Method 990.28). Analyst, 95, 119.
- Pallone, J.A.L., dos Santos Caramês, E.T., & Alamar, P.D. (2018). Green analytical chemistry applied in food analysis: alternative techniques. Current Opinion in Food Science, 22, 115-121. https://doi.org/10.1016/j.cofs.2018.01.009
- Pebriana, R.B., Rohman, A., Lukitaningsih, E., & Sudjadi. (2017). Development of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in beef sausage employing three lipid extraction systems. International Journal of Food Properties, 20(sup2), 1995-2005.
- Peng, L., Cheng, H., Wang, L.-J., & Zhu, D. (2020). Comparisons of the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratory Visible–Near-Infrared reflectance spectroscopy data. Canadian Journal of Soil Science, 101(1), 33-44. https://doi.org/10.1139/cjss-2020-0025
- Pisoschi, A.M., Pop, A., Gajaila, I., Iordache, F., Dobre, R., Cazimir, I., & Serban, A.I. (2020). Analytical methods applied to the assay of sulfur-containing preserving agents. Microchemical Journal, 155, 104681. https://doi.org/10.1016/j.microc.2020.104681
- Rethmeier, J., Rabenstein, A., Langer, M., & Fischer, U. (1997). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. Journal of Chromatography A, 760(2), 295-302. https://doi.org/10.1016/S0021-9673(96)00809-6
- Reza, T., Aktar, S., Al Amin, H., Rahman, M., Arefin, A., Mohanto, N.C., Nikkon, F. (2014). In vivo analysis of toxic effect of hydrose used in food preparations in Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 4(11), 884-889. https://doi.org/10.12980/APJTB. 4.201414B366
- Rinnan, Å., Nørgaard, L., van den Berg, F., Thygesen, J., Bro, R., & Engelsen, S.B. (2009). Data pre-processing. Infrared spectroscopy for food quality analysis and control, 29-50.
- Roa, D.F., Santagapita, P.R., Buera, M.P., & Tolaba, M.P. (2014). Ball milling of Amaranth starch-enriched fraction. Changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food and Bioprocess Technology, 7, 2723-2731. https://doi.org/10.1007/s11947-014-1283-0
- Rodríguez, S.D., Rolandelli, G., & Buera, M.P. (2019). Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry, 274, 392-401. https://doi.org/10.1016/j.foodchem.2018.08.140
- Rohman, A., & Salamah, N. (2018). The employment of spectroscopic techniques coupled with chemometrics for authentication analysis of halal pharmaceuticals. Journal of Applied Pharmaceutical Science, 8(10), 063-068. https://doi.org/10.7324/JAPS.2018.81009
- Sabeghi, M. (2004). Interview with Dean of Faculity of flour and Bread. Journal of Iran dough-baked, 3, 5-6.
- Savitzky, A., & Golay, M.J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ ac60214a047
- Shewry, P. (2009). The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health: Wiley Online Library.
- Shewry, P.R., Powers, S., Field, J.M., Fido, R.J., Jones, H.D., Arnold, G.M., Barro, F. (2006). Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theoretical and Applied Genetics, 113, 128-136. https://doi.org/10.1007/s00122-006-0279-1
- Sikorska, E., Khmelinskii, I., & Sikorski, M. (2014). Vibrational and electronic spectroscopy and chemometrics in analysis of edible oils. Methods in Food Analysis; Cruz, RMS, Khmelinskii, I., Vieira, M., Eds, 201-234.
- Topping, D. (2007). Cereal complex carbohydrates and their contribution to human health. Journal of Cereal Science, 46(3), 220-229. https://doi.org/10.1016/j.jcs.2007.06.004
- Vapnik, V. (1999). The nature of statistical learning theory: Springer science & business media. https://doi.org/10.1109/72.788640
- Varmuza, K., & Filzmoser, P. (2016). Introduction to multivariate statistical analysis in chemometrics: CRC press. https://doi.org/10.1201/9781420059496
- Yuan, W., Xiang, B., Yu, L., & Xu, J. (2011). A non-invasive method for screening sodium hydroxymethanesulfonate in wheat flour by near-infrared spectroscopy. Food Analytical Methods, 4, 550-558. https://doi.org/10.1007/s12161-011-9198-0
- Zeaiter, M., Roger, J.-M., & Bellon-Maurel, V. (2005). Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. TrAC Trends in Analytical Chemistry, 24(5), 437-445. https://doi.org/10.1016/j.trac.2004.11.023
ارسال نظر در مورد این مقاله