نوع مقاله : مقاله پژوهشی
نویسندگان
گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
توسعه جانشین چربی که خصوصیات بافتی و کیفیت حسی بستنی را حفظ کند، همچنان یک چالش بزرگ در کاهش چربی بستنی است. در این پژوهش، در جهت کاهش میزان درصد چربی بستنی پرچرب به 2.5 درصد بهوسیله صمغ ریشه گیاه سریش در سطوح مختلف (0.2، 0.3، 0.4 و 0.5درصد) که بهعنوان جایگزین چربی مورد استفاده قرار گرفت و پس از تولید مخلوط بستنی مدنظر، آزمونهای فیزیکی، رئولوژیکی و حسی بر تیمارهای ایجاد شده در مقایسه با نمونه پرچرب (10 درصد) انجام گردید. براساس نتایج حاصل، نمونههای مورد بررسی تماماً رفتار شلشونده با برش را از خود نشان دادند. در نمونه حاوی 0.2 درصد از صمغ، سرعت ذوب با افزایش (از 0.32 به 0.39) رو به رو شد، همچنین با افزایش میزان صمغ در نمونهها، دمای خروج از انجماد یک درجه سلسیوس کاهش پیدا کرد (از 4.39- به 5.39-). پذیرش کلی، pH و ماده خشک تغییر واضحی نداشتند (0.05≤P) که نشاندهنده مفید و کاربردی بودن این روش میباشد. همینطور در خصوص ویژگیهای رئولوژیکی، بیشترین میزان ضریب قوام در نمونه 0.5درصد صمغ و برابر با 2.2605، بهطور مشابه بیشترین تنش تسلیم نیز در نمونه 0.5درصد صمغ و برابر با pa 6.7076 و به همین شکل، بیشترین مقدار ویسکوزیته پلاستیک (P<0.05) و ویسکوزیته ظاهری (0.05≤P) نیز متعلق به نمونه حاوی 0.5 درصد صمغ بود. همچنین نشان داده شد که در ویژگیهای رئولوژیکی با افزایش میزان صمغ در نمونهها، میزان پارامتر مربوطه افزایش قابل توجهی داشت که در تمام این پارامترها، نمونه حاوی 0.2 درصد به شکل استثنا از نمونه شاهد میزان کمتری را نشان داد، نتایج این پژوهش نشان داد که استفاده از صمغ ریشه سریش بهعنوان جایگزین چربی برخی خصوصیات نمونههای کمچرب را پرچرب نزدیک کرده و میتواند با ارائه یک محصول سالمتر با ویژگیهای بافتی و حسی قابل قبول منجر به تولید محصولی مورد استقبال مصرفکنندگان قرار گیرد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
The Effect of Serish Root Gum (Eremurus luteus) as Fat Replacer on Rheological, Physical and Sensory Properties of Low Fat Ice Cream
نویسندگان [English]
- Fatemeh Sabzmeidani
- Masoud Taghizadeh
- Mohammad Saleh Hemati Hasan Poor
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]
Introduction
Ice cream is a frozen product, which is obtained from milk by adding compounds such as sweeteners, emulsifiers, stabilizers and flavoring agents. The structure of ice cream is a complex physicochemical system composed of three phases: liquid, solid and gas. Scientific results have shown that there is a connection between high fat consumption and cardiovascular diseases. Considering that ice cream is an almost fatty product and is particularly popular among people in the society, there is a greater demand for consuming low-fat varieties of this product. The food industry is also looking for new alternatives to minimize the negative effects of fat reduction on quality of ice cream. Hydrocolloids, are carbohydrate-based fat substitutes, which can mimic the mouthfeel and flow characteristics of fat cells due to their emulsifying and water binding capabilities. Eremurus luteus is one of the rhizome plants belonging to the Asphodelaceae family, cultivated around the world, including Iran. Cerise root gum is a new source of hydrocolloid with a glucose to mannose ratio of 1:1 to 1 from the family of glucomannans. The intrinsic viscosity of this gum was measured as 6.32 and 6.35 dl/g according to Huggins and Kramer equations, respectively, and it has the highest foam stability in concentrations of 0.2 to 0.5%. The rheological properties of cerise root gum have proven its important role as a new thickener, stabilizer and foaming agent.
Materials and Methods
In this research, sterilized and homogenized milk (1.5% fat) from Mihan Dairy Industries Company, sterilized and homogenized cream (25% fat) from Pegah Khorasan Dairy Industries Company, emulsifier 471 E from Beldom Belgium Company, powdered skim milk from Pegah company.Sugar and vanilla from confectionery store. Serish root gum was prepared according to the method of Salahi et al. (2020).
The amount of ingredients required for the normal sample (high-fat control) was determined based on primary sources, including 10% fat, 11% fat-free milk solids, 12% sugar, 0.25% stabilizer, 0.15% emulsifier and 0.1% vanilla. According to the definitions for reduced-fat ice cream, 75% fat reduction was made from the normal sample (10% fat). In this regard, the investigated treatments were as follow: the amount of fat (2.5% fat: L), the type of gum (SRG) and the concentration of gum (at four levels: 0.2, 0.3, 0.4, 0.5%) compared to the control sample as high fat (10% fat: F).
First, the liquid ingredients, including milk and cream, were continuously stirred while heating up to a maximum of 5 °C. After that, the mixture of solid materials (sugar, milk powder, gum, etc.) was added to the liquid part and mixed with a stirrer for three minutes after dissolving thes solids. The resulting mixture was pasteurized at 80°C for 25 seconds and homogenized with a homogenizer at 22,000 rpm for 1 minute and transferred to a water, salt, and ice bath and cooled to 50°C. Then, it was kept in the refrigerator at a temperature of 5°C for 24 hours. Finally, the mixture was transferred to a non-continuous ice cream machine for 15 minutes for the freezing stage, and the samples were poured into special containers with lids and coded, and placed in a freezer at -18 °C for at least 24 hours.
Results and Discussion
By adding gum and increasing its concentration, the amount of apparent viscosity, consistency coefficient, yield stress, plastic viscosity, textural characteristics (hardness, adhesion, continuity and apparent modulus of elasticity) increased. In the sensory evaluation section, the characteristics of creaminess, sweetness, viscosity, roughness, coldness and hardness were evaluated by transient dominant sensation test and these changes were significant in most cases. Sample containing 0.3% gum had the highest overall acceptance after the control sample compared to other samples. The results showed that these variables have the ability to simulate rheological properties (apparent viscosity, consistency coefficient, yield stress and plastic viscosity), melting speed and sensory characteristics such as creaminess, roughness, cryogenicity, viscosity, hardness and overall acceptance of the control sample with high fat as effective factors on the texture production process and the mouthfeel of the product in low-fat ice creams. On the other hand, due to the absence of significant differences between the data obtained from the pH and dry matter measurement tests, the applicability of Serish gum can be confirmed as a fat substitute.
Conclusion
The examined samples all showed the loosening behavior with cutting. In the sample containing 0.2% gum, the melting speed increased (from 0.32 to 0.39), also with the increase in the amount of gum in the samples, the freezing temperature decreased by one degree Celsius (from39.4 to 39.5). Overall acceptance, pH and dry matter did not change significantly, which indicates the usefulness and applicability of this method. Also, regarding the rheological characteristics, the highest consistency coefficient in the 0.5% gum sample was 2.2605, similarly, the highest yield stress was in 0.5% gum sample and was 6.7076 pa. Similarly, the highest amount of Plastic viscosity and apparent viscosity belonged to the sample containing 0.5% gum. It was also shown that in the rheological characteristics, with the increase in the amount of gum in the samples, the amount of the relevant parameter increased significantly, and in all these parameters, sample containing 0.2% showed a lower amount than the control sample.
کلیدواژهها [English]
- Fat replacer
- Hydrocolloid
- Low fat ice cream
- Rheology
- Serish root Gum (Eremurus luteus)
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Akbari, M., Eskandari, M.H., Niakosari, M., & Bedeltavana, A. (2016). The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. International Dairy Journal, 57, 52–55. https://doi.org/10.1016/J.IDAIRYJ.2016.02.040
- Al-Ghouna, A., Mohabi, M., Mir Arab, S., & Khodayi, D. (2015). The effect of feromulsion compounds on the sensory properties of low-fat ice cream using the response surface method and using the principal component analysis method to model overall acceptance. Quarterly Journal of Science and Food Industries, 53. (In Persian)
- Amiri Eghdaei, Q.S., Scientific, M., Rezaei, R., Dadpur, M., & Khmeri, M. (2012). The effect of the mucilage of basil and asparagus seeds on the physicochemical, rheological and sensory characteristics of soft ice cream. Research and Innovation in Food Science and Industry, 1(1). (In Persian with English abstract).
- AOAC. (2005). Official methods of analysis. In L. G. W. (Ed.) , 18th ed. Matyland: AOAC International Arbuckle, W. S. Wendell S. (1986). Ice cream (2rd Edition (ed.)). The AVI Publishing Company; INC; Westport. Arbuckle, W.S. 1997. Ice cream, third edition, AVI publishing company, inc, Westport, Connenticut, page 242. https://doi.org/10.1002/star.19620140509
- Aziz, N.S., Sofian-Seng, N.S., Yusop, S.M., Kasim, K.F., & Razali, N.S.M. (2018). Functionality of Okra gum as a novel carbohydrate-based fat replacer in ice cream. Food Science and Technology Research, 24(3), 519–530. https://doi.org/10.3136/FSTR.24.519
- Bahramparvar, M., & Tehrani, M.M. (2011). Application and functions of stabilizers in ice cream. 27(4), 389–407. https://doi.org/10.1080/87559129.2011.563399
- Bahramparvar, M., & Goff, H.D. (2013). Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. Dairy Science and Technology, 93(3), 273–285. https://doi.org/10.1007/S13594-013-0122-9
- Beigi, M., & Jahanbin, K. (2019). A water-soluble polysaccharide from the roots of Eremurus spectabilis B. subsp. spectabilis: Extraction, purification and structural features. International Journal of Biological Macromolecules, 128, 648–654. https://doi.org/10.1016/J.IJBIOMAC.2019.01.178
- Cody, T.L., Olabi, A., Pettingell, A.G., Tong, P.S., & Walker, J.H. (2007). Evaluation of rice flour for use in vanilla ice cream. Journal of Dairy Science, 90(10), 4575–4585. https://doi.org/10.3168/JDS.2006-531
- Faraji Kashefgari, S., A'alami, M., Khamiri, M., & Motamedzadegan, A. (2013). Use of protein-based fat substitutes in the production of low-fat ice cream, Second National Conference on Food Science and Technology, Quchan, https://civilica.com/doc/205883
- Goff, H.D., & Davidson, V.J. (1992). Flow characteristics and holding time calculations of ice cream mixes in HTST holding tubes. Journal of Food Protection, 55(1), 34-37. https://doi.org/10.4315/0362-028x-55.1.34
- Goff, H.D., & Hartel, R.W. (2013). Ice cream structure. Ice Cream, 313–352. https://doi.org/10.1007/978-1-4614-6096-1_11
- Hosseini-Parvar, S.H., Matia-Merino, L., Goh, K.K.T., Razavi, S.M.A., & Mortazavi, S.A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236–243. https://doi.org/10.1016/j.jfoodeng.2010.06.025
- Iranian Dairy Products Industry Association, (2019) (ht://ir-dis.org/fa.) (In Persian)
- Javidi, F., Razavi, S.M.A., Behrouzian, F., & Alghooneh, A. (2016). The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocolloids, 52, 625–633. https://doi.org/10.1016/J.FOODHYD.2015.08.006
- Javidi, F., & Razavi, S.M.A. (2018). Rheological, physical and sensory characteristics of light ice cream as affected by selected fat replacers. Journal of Food Measurement and Characterization, 12(3), 1872–1884. https://doi.org/10.1007/S11694-018-9801-9
- Kemp, S.E., Hort, J., Hollowood, T., Kemp, S.E., & Hollowood, T. (2017). Time-dependent measures of perception in sensory evaluation. https://doi.org/10.1002/9781118991640
- Kurt, A., Cengiz, A., & Kahyaoglu, T. (2016). The effect of gum tragacanth on the rheological properties of salepbased ice cream mix. Carbohydrate Polymers, 143, 116–123. https://doi.org/10.1016/J.CARBPOL.2016.02.018
- Lim, J., Inglett, G.E., & Lee, S. (2010). Response to consumer demand for reduced-fat foods; Multi-functional fat replacers. Japan Journal of Food Engineering, 11(4), 147–152. https://doi.org/10.11301/JSFE.11.147
- Liu, R., Wang, L., Liu, Y., Wu, T., & Zhang, M. (2018). Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heatshearing treatment. Food Hydrocolloids, 81, 39–47. https://doi.org/10.1016/J.FOODHYD.2018.01.031
- Lu, J., Pua, H., Liu, C., Te, Chang, C.L., & Cheng, K.C. (2014). The implementation of HACCP management system in a chocolate ice cream plant. Journal of Food and Drug Analysis, 22(3), 391–398. https://doi.org/10.1016/J.JFDA.2013.09.049
- Marshall, R.T., Goff, H.D., & Hartel, R.W. (2003). Ice cream, (3rd ed.). New York: Aspen 507 Publishers.
- National Standard of Iran, No. 2852.1371, the method of determining the total acidity of WPH or the density of H ions in milk and its products. (In Persian)
- Poursani, P., Razavi, S.M.A., & Mazaheri Tehrani, M. (2021). Effect of selected fat replacers on textural, physical and sensory properties of non-fat ice cream. Journal of Food Science and Technology (Iran), 18(112), 97–112. https://doi.org/10.52547/FSCT.18.112.97
- Poursani, P., Razavi, S.M.A., Mazaheri Tehrani, M., & Javidi, F. (2021). Rheological, physical, and sensory properties of non-fat ice creams as affected by selected fat replacers. Journal of Food Processing and Preservation, 45(1), e15010. https://doi.org/10.1111/JFPP.15010
- Rao, M.A. (2010). Rheology of fluid and semisolid foods: principles and applications: principles and applications. Springer Science & Business Media.
- Saghaei. A., Karjian. H. & Nafchi. M. (2014). Rheological and textural properties of ice cream containing watercress seed gum. 24(2). https://foodresearch.tabrizu.ac.ir/article_ .188-179
- Salahi, , Razavi, S.M.A., & Sadegh Amiri, M.S. (2021). Optimization of hydrocolloid extraction from serish root (Eremurus luteus) using response surface method and examining physicochemical characterization of the optimized sample. FSCT, 18(112), 153-168. https://doi.org/10.52547/fsct.18.112.153
- Salahi, M., Razavi, S.M.A., & Hasanvand, E. (2022). Physicochemical, rheological and functional properties of a novel gum from Eremurus luteus Bioactive Carbohydrates and Dietary Fibre, 27, 100296. https://doi.org/10.1016/j.bcdf.2021.100296
- Salahi, M., Razavi, S.M.A., & Sadegh Amiri, M.S. (2021). Optimization of hydrocolloid extraction from serish root (Eremurus luteus) using response surface method and examining physicochemical characterization of the optimized sample. Journal of Food Science and Technology (Iran), 18(112), 153–168. https://doi.org/10.52547/FSCT.18.112.153
- Shahrampour, D., & Razavi, S.M.A. (2023). Novel antimicrobial/antioxidant Eremurus luteus root gum coating containing rosemary essential oil nanoemulsions for extension of chicken meat shelf life. Food Science & Nutrition, February, 3131–3140. https://doi.org/10.1002/fsn3.3295
- Soukoulis, C., Chandrinos, I., & Tzia, C. (2008). Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT - Food Science and Technology, 41(10), 1816–1827. https://doi.org/10.1016/J.LWT.2007.12.009
- SZCZESNIAK, A.S., & Kahn, E.L. (1984). Texture contrasts and combinations: a valued consumer attribute. Journal of Texture Studies, 15(3), 285-301. https://doi.org/10.1111/j.1745-4603.1984.tb00385.x
ارسال نظر در مورد این مقاله