with the collaboration of Iranian Food Science and Technology Association (IFSTA)

Document Type : Review Article-en

Authors

1 Department of Chemistry, College of Education for Pure Science, University of Mosul, Iraq

2 Pharmaceutical Chemistry Department, College of Pharmacy, Ninevah University, Mosul, Iraq

3 General Directorate of Education in Nineveh, Iraq

10.22067/ifstrj.2025.91193.1391

Abstract

Enzymatic browning mostly happens in fresh fruits and vegetables and is critical in determining the product's shelf life. A class of enzymes known as polyphenol oxidases are responsible for this color alteration. Polyphenol oxidase is the main enzyme that catalyzes the oxidation of phenolic compounds in the presence of oxygen, forming brown pigment. Therefore, several methods are required to prevent these reactions. Natural ascorbic acid is considered among the highly effective chemicals in stopping this reaction and preventing browning. It is a non-toxic and effective alternative to synthetic chemicals. It is also characterized by having powerful antioxidant and free radical scavenging properties. This review offers a focused and novel contribution to the scientific literature by exclusively investigating AA as an anti-browning agent (ABA), enabling a detailed understanding of its specific mechanisms, efficacy, and practical applications. Unlike broader reviews that cover many inhibitors, this work provides a comparative analysis of the performance of AA in various foods, highlighting its strengths and limitations in different contexts. By integrating research from past years, we highlight different approaches, such as the combination with synergists and integration with edible coatings and packaging. Importantly, we not only describe its optimal conditions and benefits, but also assess its limitations, such as its instability and susceptibility. Finally, the evidence and future directions are organized in a way that helps food technologists identify promising protocols, design preservation strategies, and avoid previously documented limitations of future research.

Keywords

Main Subjects

Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abdelwahd, R., Hakam, N., Labhilili, M., & Udupa, S.M. (2008). Use of an adsorbent and antioxidants to reduce the effects of leached phenolics in in vitro plantlet regeneration of faba bean. African Journal of Biotechnology, 7(8). https://hdl.handle.net/20.500.11766/13068
  2. Al-Abbasy, O.Y., Ali, W.I., Rashan, A.I., & Al-Bajari, S.A. (2021). Purification, characterization, and inhibition of tyrosinase from jerusalem artichoke (Helianthus tuberosus) tuber. Reports of Biochemistry & Molecular Biology, 10(3), 495. https://doi.org/10.52547/rbmb.10.3.495
  3. AL-abbasy, O.Y., M Mahdi, N., Younus, S.A., Sheej Ahmad, O.A., & Al-Azzawi, A.G.S. (2025). Potato enzymatic browning, mitigation and prevention: Current overview of approaches and findings. Journal of Food Science and Technology (Iran), 22(164), 1-15.https://doi.org/10.22034/fsct.22.164.1
  4. Al-burgus, A.F., Ali, A., & Al-abbasy, O.Y. (2024). New spiro-heterocyclic coumarin derivatives as antibacterial agents: design, synthesis and molecular docking. Chimica Techno Acta, 11(3). https://doi.org/10.15826/chimtech.2024.11.3.08
  5. Ali,, Riaz, S., Khalid, W., Fatima, M., Mubeen, U., Babar, Q., Manzoor, M.F., Zubair Khalid, M., & Madilo, F.K. (2024). Potential of ascorbic acid in human health against different diseases: an updated narrative review. International Journal of Food Properties, 27(1), 493-515. https://doi.org/10.1080/10942912.2024.2327335
  6. Almeida, M., & Nogueira, J. (1995). The control of polyphenol oxidase activity in fruits and vegetables: a study of the interactions between the chemical compounds used and heat treatment. Plant Foods for Human Nutrition, 47, 245-256. https://doi.org/10.1007/BF01088333
  7. Alrushdi, F.M.M., Mohammed Al-Abaasy, O.Y., Al-Saffar, R.N., Abbood, H.Y., Al-Hamairy, A.K., Saleh, M.Y., Abdelzaher, H., Abdelzaher, M.A., & A Kenawy, M. (2025). In vitro: inhibition of partially purified pancreatic ovine lipase by willow bark extracts. Journal of Bioscience and Applied Research, 11(1), 168-179. https://doi.org/10.21608/jbaar.2025.339535.1113
  8. Altunkaya,, & Gökmen, V. (2008). Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chemistry, 107(3), 1173-1179. https://doi.org/10.1016/j.foodchem.2007.09.046
  9. Altunkaya, A., & Gökmen, V. (2009). Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce ( sativa). Food Chemistry, 117(1), 122-126. https://doi.org/10.1016/j.foodchem.2009.03.085
  10. And, O.L., & Watson, M. (2001). Effects of ascorbic acid on peroxidase and polyphenoloxidase activities in fresh‐cut cantaloupe melon. Journal of Food Science, 66(9), 1283-1286. https://doi.org/10.1111/j.1365-2621.2001.tb15202.x
  11. Arafat, L. (2009). Ascorbic acid and tissue browning in mango CV Hindi Be-Sennara fruits (Mangifera indica ) under cold storage. Journal of Plant Production, 34(12), 11301-11310. https://doi.org/10.21608/jpp.2009.119187
  12. Arnold, M., & Gramza‐Michałowska, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5038-5076. https://doi.org/10.1111/1541-4337.13059
  13. Arslan, O., Erzengin, M., Sinan, S., & Ozensoy, O. (2004). Purification of mulberry (Morus alba) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties. Food Chemistry, 88(3), 479-484. https://doi.org/10.1016/j.foodchem.2004.04.005
  14. Atta, E.M., Mohamed, N.H., & Abdelgawad, A.A. (2017). Antioxidants: An overview on the natural and synthetic types. European Chemical Bulletin 6(8), 365-375. https://doi.org/10.17628/ecb.2017.6.365-375
  15. Ayon-Reyna, L.E., Ayon-Reyna, L.G., Lopez-Lopez, M.E., Lopez-Angulo, G., Pineda-Hidalgo, K.V., Zazuebla-Niebla, J.A., & Vega-Garcia, M.O. (2019). Changes in ascorbic acid and total phenolics contents associated with browning inhibition of pineapple slices. Food Science and Technology, 39, 531-537. https://doi.org/10.1590/fst.21117
  16. Aziz, M.J., Ali, A.A., Haddad, M.F., & Abdullah, B.A. (2024). The relationship of vitamin D3, D-dimer, and antinuclear antibody levels with toxoplasmosis. Medical Journal of Babylon, 21(3), 556-559. https://doi.org/10.4103/mjbl.mjbl_812_23
  17. Babaei, N., Abdullah, N.A.P., Saleh, G., & Abdullah, T.L. (2013). Control of contamination and explant browning in Curculigo latifolia in vitro cultures. Journal of Medicinal Plants Research, 7(8), 448-454. https://doi.org/10.5897/JMPR12.859
  18. Baghi, F., Gharsallaoui, A., Dumas, E., & Ghnimi, S. (2022). Advancements in biodegradable active films for food packaging: Effects of nano/microcapsule incorporation. Foods, 11(5), 760. https://doi.org/10.3390/foods11050760
  19. Barbagallo, R.N., Chisarib, M., & Patanèc, C. (2012). Use in vivo of natural anti-browning agents against polyphenol oxidase activity in minimally processed eggplant. Chemical Engineering, 27, 49-54. https://doi.org/10.3303/CET1227009
  20. Bobo-García, G., Arroqui, C., Merino, G., & Vírseda, P. (2020). Antibrowning compounds for minimally processed potatoes: A review. Food Reviews International, 36(5), 529-546. https://doi.org/10.1080/87559129.2019.1650761
  21. Bratovcic, A. (2020). Antioxidant enzymes and their role in preventing cell damage. Acta Scientific Nutritional Health, 4, 01-07. https://doi.org/10.31080/ASNH.2020.04.0659
  22. Chazarra, S., García-Carmona, F., & Cabanes, J. (2001). Evidence for a tetrameric form of iceberg lettuce (Lactuca sativa) polyphenol oxidase: purification and characterization. Journal of Agricultural and Food Chemistry, 49(10), 4870-4875. https://doi.org/10.1021/jf0100301
  23. Chua, L.S., Chan, Y.L., Tay, Z.Y., & Soo, J. (2023). Water-soluble propolis extract as a natural preservative for jaboticaba juice. Food Bioscience, 53, 102651. https://doi.org/10.1016/j.fbio.2023.102651
  24. Comunian, T.A., Abbaspourrad, A., Favaro-Trindade, C.S., & Weitz, D.A. (2014). Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chemistry, 152, 271-275. https://doi.org/10.1016/j.foodchem.2013.11.149
  25. Danyen, S.B., Boodia, N., & Ruggoo, A. (2009). Interaction effects between ascorbic acid and calcium chloride in minimizing browning of fresh‐cut green banana slices. Journal of Food Processing and Preservation, 33, 12-26. https://doi.org/10.1111/j.1745-4549.2008.00246.x
  26. Debelo, H., Li, M., & Ferruzzi, M.G. (2020). Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 32, 90-102. https://doi.org/10.1016/j.cofs.2020.03.001
  27. Dias, C., Fonseca, A.M., Amaro, A.L., Vilas-Boas, A.A., Oliveira, A., Santos, S.A., Silvestre, A.J., Rocha, S.M., Isidoro, N., & Pintado, M. (2020). Natural-based antioxidant extracts as potential mitigators of fruit browning. Antioxidants, 9(8), 715. https://doi.org/10.3390/antiox9080715
  28. Díaz-Montes, E., & Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), 249. https://doi.org/10.3390/foods10020249
  29. Du,, Cullen, J.J., & Buettner, G.R. (2012). Ascorbic acid: chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1826(2), 443-457. https://doi.org/10.1016/j.bbcan.2012.06.003
  30. eddine Derardja, A., Pretzler, M., Kampatsikas, I., Barkat, M., & Rompel, A. (2019). Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid. Food Chemistry: X, 4, 100053. https://doi.org/10.1016/j.fochx.2019.100053
  31. Eleni, M., & Theodoros, V. (2011). Effect of storage conditions on the sensory quality, colour and texture of fresh-cut minimally processed cabbage with the addition of ascorbic acid, citric acid and calcium chloride. Food and Nutrition Sciences, 2011. https://doi.org/10.4236/fns.2011.29130
  32. Farouk, B., Aref, N., Rachid, C., Mourad, L., Emna, K., Fethi, B., Rania, B., Wafa, N., Kenza, B., & Boumediene, M. (2020). Characterization of three polyphenol oxidase isoforms in royal dates and inhibition of its enzymatic browning reaction by indole-3-acetic acid. International Journal of Biological Macromolecules, 145, 894-903. https://doi.org/10.1016/j.ijbiomac.2019.09.140
  33. Favre, L.C., Dos Santos, C., López-Fernández, M.P., Mazzobre, M.F., & del Pilar Buera, M. (2018). Optimization of β-cyclodextrin-based extraction of antioxidant and anti-browning activities from thyme leaves by response surface methodology. Food Chemistry, 265, 86-95. https://doi.org/10.1016/j.foodchem.2018.05.078
  34. Feng, Y., Liu, Q., Liu, P., Shi, J., & Wang, Q. (2020). Aspartic acid can effectively prevent the enzymatic browning of potato by regulating the generation and transformation of brown product. Postharvest Biology and Technology, 166, https://doi.org/10.1016/j.postharvbio.2020.111209
  35. Gao, L., Li, K.D., & Li, Y.C. (2013). Inhibition kinetics of polyphenol oxidase from purple sweet potato by ascorbic acid. Applied Mechanics and Materials, 333, 1921-1925. https://doi.org/10.4028/www.scientific.net/AMM.333-335.1921
  36. Gómez-López, V.M. (2002). Some biochemical properties of polyphenol oxidase from two varieties of avocado. Food Chemistry, 77(2), 163-169. https://doi.org/10.1016/S0308-8146(01)00331-4
  37. Guerrero-Beltrán, J.A., Swanson, B.G., & Barbosa-Cánovas, G.V. (2005). Inhibition of polyphenoloxidase in mango puree with 4-hexylresorcinol, cysteine and ascorbic acid. LWT-Food Science and Technology, 38(6), 625-630. https://doi.org/10.1016/j.lwt.2004.08.002
  38. Hassan, M.N., Haddad, M.F., & Sultan, S.M. (2020). Inhibition of Staphylococcus aureus growth isolated from teeth decay using pomegranate fat extract fortified by silver nanoparticles (AgNp). International Journal of Pharmaceutical Research (09752366), 12(4). https://doi.org/10.31838/ijpr/2020.12.04.240
  39. Hicks, K.B., Sapers, G.M., & Seib, P.A. (1990). Process for preserving raw fruit and vegetable juices using cyclodextrins and compositions thereof. In): Google Patents.
  40. Hithamani, G., Medappa, H., Chakkaravarthi, A., Ramalakshmi, K., & Raghavarao, K.S.M.S. (2018). Effect of adsorbent and acidulants on enzymatic browning of sugarcane juice. Journal of Food Science and Technology, 55, 4356-4362. https://doi.org/10.1007/s13197-018-3350-4
  41. Hope, G. (1961). Use of antioxidants in caning apple halves. Food Technology, 15(12), 548-560.
  42. Hsu, A., Shieh, J., Bills, D., & White, K. (1988). Inhibition of mushroom polyphenoloxidase by ascorbic acid derivatives. Journal of Food Science, 53(3), 765-767. https://doi.org/10.1111/j.1365-2621.1988.tb08951.x
  43. Jang, J.-H., & Moon, K.-D. (2011). Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chemistry, 124(2), 444-449. https://doi.org/10.1016/j.foodchem.2010.06.052
  44. Jia, S., Jiang, S., Chen, Y., Wei, Y., & Shao, X. (2022). Comparison of inhibitory effects of cinnamic acid, β-cyclodextrin, L-cysteine, and ascorbic acid on soluble and membrane-bound polyphenol oxidase in peach fruit. Foods, 12(1), 167. https://doi.org/10.3390/foods12010167
  45. Jiang, G.-H., Kim, Y.-M., Nam, S.-H., Yim, S.-H., & Eun, J.-B. (2016). Enzymatic browning inhibition and antioxidant activity of pear juice from a new cultivar of asian pear (Pyrus pyrifolia Nakai cv. Sinhwa) with different concentrations of ascorbic acid. Food Science and Biotechnology, 25, 153-158. https://doi.org/10.1007/s10068-016-0023-9
  46. Kabasakalis, V., Siopidou, D., & Moshatou, E. (2000). Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chemistry, 70(3), 325-328. https://doi.org/10.1016/S0308-8146(00)00093-5
  47. Kader, A.A., Zagory, D., Kerbel, E.L., & Wang, C.Y. (1989). Modified atmosphere packaging of fruits and vegetables. Critical Reviews in Food Science & Nutrition, 28(1), 1-30. https://doi.org/10.1080/10408398909527490
  48. Kavrayan, D., & Aydemir, T. (2001). Partial purification and characterization of polyphenoloxidase from peppermint (Mentha piperita). Food Chemistry, 74(2), 147-154. https://doi.org/10.1016/S0308-8146(01)00106-6
  49. Khedr, E., & Ali, M. (2017). Application of antibrowning and firmness supporting compounds to maintain the quality of fresh-cut guava. Egyptian Journal of Agricultural Sciences, 68(3), 293-303. https://doi.org/10.21608/ejarc.2017.212733
  50. Kim,-K., Hwang, K.-E., Lee, M.-A., Paik, H.-D., Kim, Y.-B., & Choi, Y.-S. (2019). Quality characteristics of pork loin cured with green nitrite source and some organic acids. Meat Science, 152, 141-145. https://doi.org/10.1016/j.meatsci.2019.02.015
  51. Koffi, E., Sims, C., & Bates, R. (1991). Viscosity reduction and prevention of browning in the preparation of clarified banana juice 1. Journal of Food Quality, 14(3), 209-218. https://doi.org/10.1111/j.1745-4557.1991.tb00062.x
  52. Komthong, P., Igura, N., & Shimoda, M. (2007). Effect of ascorbic acid on the odours of cloudy apple juice. Food Chemistry, 100(4), 1342-1349. https://doi.org/10.1016/j.foodchem.2005.10.070
  53. Kuai, L., Liu, F., Chiou, B.-S., Avena-Bustillos, R.J., McHugh, T.H., & Zhong, F. (2021). Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 120, https://doi.org/10.1016/j.foodhyd.2021.106992
  54. Kükürt, A., & Gelen, V. (2024). Ascorbic Acid: Biochemistry and Functions (https://doi.org/10.5772/intechopen.105286): BoD–Books on Demand.
  55. Landi, M., Degl'Innocenti, E., Guglielminetti, L., & Guidi, L. (2013). Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning‐sensitive Lactuca sativa capitata (L.) and Eruca sativa (Mill.) stored as fresh‐cut produce. Journal of the Science of Food and Agriculture, 93(8), 1814-1819. https://doi.org/10.1002/jsfa.5969
  56. Lante, A., Tinello, F., & Nicoletto, M. (2016). UV-A light treatment for controlling enzymatic browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141-147. https://doi.org/10.1016/j.ifset.2015.12.029
  57. Lee, C.Y., & Whitaker, J.R. (1995). Enzymatic browning and its prevention. ACS Publications. https://doi.org/10.1021/bk-1995-0600.ch001
  58. Levaj, B., Pelaić, Z., Galić, K., Kurek, M., Ščetar, M., Poljak, M., Dite Hunjek, D., Pedisić, S., Balbino, S., & Čošić, Z. (2023). Maintaining the quality and safety of fresh-cut potatoes (Solanum tuberosum): Overview of recent findings and approaches. Agronomy, 13(8), 2002. https://doi.org/10.3390/agronomy13082002
  59. Li,, Ding, X., Li, J., & Yan, S. (2023). Effects of different concentrations of ascorbic acid on the stability of (+)–Catechin under enzymatic conditions. Food Chemistry, 399, 133933. https://doi.org/10.1016/j.foodchem.2022.133933
  60. Li, C., Li, J., Yan, S., & Wang, Q. (2022). The mechanism of interaction between lotus rhizome polyphenol oxidase and ascorbic acid: Inhibitory activity, thermodynamics, and conformation analysis. Journal of Food Biochemistry, 46(5), e14047. https://doi.org/10.1111/jfbc.14047
  61. Li, G., Wang, X., Zhu, H., Li, G., Du, J., Song, X., & Erihemu. (2023). Use of different food additives to control browning in fresh‐cut potatoes. Food Science & Nutrition, 11(12), 7967-7973. https://doi.org/10.1002/fsn3.3714
  62. Li, H., Guo, A., & Wang, H. (2008). Mechanisms of oxidative browning of wine. Food Chemistry, 108(1), 1-13. https://doi.org/10.1016/j.foodchem.2007.10.065
  63. Lim,Y., & Wong, C.W. (2018). Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale Roscoe). Journal of Food Science and Technology, 55, 3001-3007. https://doi.org/10.1007/s13197-018-3218-7
  64. Liu,, Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45-53. https://doi.org/10.1016/j.scienta.2014.06.027
  65. Malo, C., & Wilson, J. (2000). Glucose modulates vitamin C transport in adult human small intestinal brush border membrane vesicles. The Journal of Nutrition, 130(1), 63-69. https://doi.org/10.1093/jn/130.1.63
  66. Marín, A., Baldwin, E.A., Bai, J., Wood, D., Ference, C., Sun, X., Brecht, J. K., & Plotto, A. (2021). Edible coatings as carriers of antibrowning compounds to maintain appealing appearance of fresh-cut mango. HortTechnology, 31(1), 27-35. https://doi.org/10.21273/HORTTECH04687-20
  67. Mercimek, H.A., Guzeldag, G., Ucan, F., Guler, K.C., Karaman, M., & Karayilan, R. (2015). Inhibition of polyphenol oxidase purified from potato (Solanum tuberosum). Romanian Biotechnological Letters, 20(6), 10961-10968. https://doi.org/10961-10968
  68. Mittu, B., Bhat, Z.R., Chauhan, A., Kour, J., Behera, A., & Kaur, M. (2022). Ascorbic acid. In Nutraceuticals and Health Care, (pp. 289-302): Elsevier. https://doi.org/10.1016/b978-0-323-89779-2.00015-6
  69. Moline,, Buta, J., & Newman, I. (1999). Prevention of browning of banana slices using natural products and their derivatives 1. Journal of Food Quality, 22(5), 499-511. https://doi.org/10.1111/j.1745-4557.1999.tb00181.x
  70. Montogomery, , & Petropakis, H. (1980). Inactivation of Bartlett pear polyphenol oxidase with heat in the presence of ascorbic acid. Journal of Food Science, 45(4), 1090-1091. https://doi.org/10.1111/j.1365-2621.1980.tb07529.x
  71. Moon,M., Kwon, E.-B., Lee, B., & Kim, C.Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 2754. https://doi.org/10.3390/molecules25122754
  72. Morsy, N.E., & Rayan, A.M. (2019). Effect of different edible coatings on biochemical quality and shelf life of apricots (Prunus armenica cv Canino). Journal of Food Measurement and Characterization, 13, 3173-3182. https://doi.org/10.1007/s11694-019-00240-2
  73. Murererehe, J., Uwitonze, A.M., Nikuze, P., Patel, J., & Razzaque, M.S. (2022). Beneficial effects of vitamin C in maintaining optimal oral health. Frontiers in Nutrition, 8, https://doi.org/10.3389/fnut.2021.805809
  74. Nazoori, F., Poraziz, S., Mirdehghan, S.H., Esmailizadeh, M., & ZamaniBahramabadi, E. (2020). Improving shelf life of strawberry through application of sodium alginate and ascorbic acid coatings. International Journal of Horticultural Science and Technology, 7(3), 279-293. https://doi.org/10.22059/ijhst.2020.297134.341
  75. Ndakidemi, C.F., Mneney, E., & Ndakidemi, P.A. (2014). Effects of ascorbic acid in controlling lethal browning in in vitro culture of Brahylaena huillensis using nodal segments. American Journal of Plant Sciences, 2014. https://doi.org/10.4236/ajps.2014.51024
  76. Nicolas, J.J., Richard‐Forget, F.C., Goupy, P.M., Amiot, M.J., & Aubert, S.Y. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science & Nutrition, 34(2), 109-157. https://doi.org/10.1080/10408399409527653
  77. Nooshkam,, Varidi, M., & Bashash, M. (2019). The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644-660. https://doi.org/10.1016/j.foodchem.2018.09.083
  78. Oliveira, I., Pinto, T., Afonso, S., Karaś, M., Szymanowska, U., Gonçalves, B., & Vilela, A. (2025). Sustainability in bio-based edible films, coatings, and packaging for small fruits. Applied Sciences, 15(3), 1462. https://doi.org/10.3390/app15031462
  79. Oms-Oliu, G., Rojas-Graü, M.A., González, L.A., Varela, P., Soliva-Fortuny, R., Hernando, M.I.H., Munuera, I.P., Fiszman, S., & Martín-Belloso, O. (2010). Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology, 57(3), 139-148. https://doi.org/10.1016/j.postharvbio.2010.04.001
  80. Özdemir, K.S., & Gökmen, V. (2019). Effect of chitosan-ascorbic acid coatings on the refrigerated storage stability of fresh-cut apples. Coatings, 9(8), 503. https://doi.org/10.3390/coatings9080503
  81. Özoğlu, H., & Bayındırlı, A. (2002). Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents. Food Control, 13(4-5), 213-221. https://doi.org/10.1016/S0956-7135(02)00011-7
  82. Öztürk, C., Aksoy, M., & Küfrevioğlu, Ö.İ. (2020). Purification of tea leaf (Camellia sinensis) polyphenol oxidase by using affinity chromatography and investigation of its kinetic properties. Journal of Food Measurement and Characterization, 14, 31-38.https://doi.org/10.1007/s11694-019-00264-8
  83. Paravisini, L., & Peterson, D.G. (2019). Mechanisms non-enzymatic browning in orange juice during storage. Food Chemistry, 289, 320-327.https://doi.org/10.1016/j.foodchem.2019.03.049
  84. Patil, V.M., Dhande, G., Thigale, D.M., & Rajput, J. (2011). Micropropagation of pomegranate (Punica granatum)‘Bhagava’cultivar from nodal explant. African Journal of Biotechnology, 10(79), 18130-18136. https://doi.org/10.5897/AJB11.1437
  85. Paudel, P., Seong, S.H., Wagle, A., Min, B.S., Jung, H.A., & Choi, J.S. (2020). Antioxidant and anti-browning property of 2-arylbenzofuran derivatives from Morus alba Linn root bark. Food Chemistry, 309, 125739. https://doi.org/10.1016/j.foodchem.2019.125739
  86. Paull, R. (1999). Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biology and Technology, 15(3), 263-277. https://doi.org/10.1016/S0925-5214(98)00090-8
  87. Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. https://doi.org/10.1016/j.tifs.2019.02.041
  88. Pérez-Gago, M.B., González-Aguilar, G., & Olivas, G. (2010). Edible coatings for fruits and vegetables. https://doi.org/10.2212/spr.2010.3.4
  89. Pernice, R., Borriello, G., Ferracane, R., Borrelli, R.C., Cennamo, F., & Ritieni, A. (2009). Bergamot: A source of natural antioxidants for functionalized fruit juices. Food Chemistry, 112(3), 545-550. https://doi.org/10.1016/j.foodchem.2008.06.004
  90. Pizzocaro, F., Torreggiani, D., & Gilardi, G. (1993). Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. Journal of Food Processing and Preservation, 17(1), 21-30. https://doi.org/10.1111/j.1745-4549.1993.tb00223.x
  91. Prasad, K., Sharma, R., & Srivastav, M. (2016). Postharvest treatment of antioxidant reduces lenticel browning and improves cosmetic appeal of mango (Mangifera indica) fruits without impairing quality. Journal of Food Science and Technology, 53, 2995-3001. https://doi.org/10.1007/s13197-016-2267-z
  92. Queiroz, C., Mendes Lopes, M.L., Fialho, E., & Valente-Mesquita, V.L. (2008). Polyphenol oxidase: characteristics and mechanisms of browning control. Food Reviews International, 24(4), 361-375. https://doi.org/10.1080/87559120802089332
  93. Rasane, P., Singh, J., Kaur, S., Bakshi, M., Gunjal, M., Kaur, J., Sharma, K., Sachan, S., Singh, A., & Bhadariya, V. (2024). Strategic advances in the management of browning in fruits and vegetables. Food and Bioprocess Technology, 17(2), 325-350. https://doi.org/10.1007/s11947-023-03128-8
  94. Rashan, A.I., & Al-abbasy, O.Y. (2021). Inhibitory and kinetic study of partially purified tyrosinase from Iraqi quince fruit. Plant Cell Biotechnology and Molecular Biology, 22(23-24), 1-14. https://hal.science/hal-05172822v1
  95. Ribárszki, Á., Székely, D., Szabó-Nótin, B., Góczán, B., Friedrich, L., Nguyen, Q., & Máté, M. (2022). Effect of ascorbic acid and acerola juice on some quality properties of aseptic filled apple juice. Acta Alimentaria, https://doi.org/10.1556/066.2022.00030
  96. Rico, D., Martin-Diana, A.B., Barat, J., & Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Science & Technology, 18(7), 373-386. https://doi.org/10.1016/j.tifs.2007.03.011
  97. Rodrigues, O.R.L., Asquieri, E.R., & Orsi, D.C. (2014). Prevention of enzymatic browning of yacon flour by the combined use of anti-browning agents and the study of its chemical composition. Food Science and Technology, 34, 275-280. https://doi.org/10.1590/fst.2014.0045
  98. Rodríguez-Arzuaga, M., & Piagentini, A.M. (2018). New antioxidant treatment with yerba mate (Ilex paraguariensis) infusion for fresh-cut apples: Modeling, optimization, and acceptability. Food Science and Technology International, 24(3), 223-231. https://doi.org/10.1177/1082013217744424
  99. Sadoon, A.M., & Ahmad, O.S. (2020). Spectroscopy study of MCL2(H2O)N cluster using AB initio calculations. Periódico Tchê Química, 17(36), 584-597. https://doi.org/10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf
  100. Santos, K.L., Bragança, V.A., Pacheco, L.V., Ota, S.S., Aguiar, C.P., & Borges, R.S. (2022). Essential features for antioxidant capacity of ascorbic acid (vitamin C). Journal of Molecular Modeling, 28, 1-8. https://doi.org/10.1007/s00894-021-04994-9
  101. Sapers, G., Hicks, K., Phillips, J., Garzarella, L., Pondish, D., Matulaitis, R., McCormack, T., Sondey, S., Seib, P., & Ei‐Atawy, Y. (1989). Control of enzymatic browning in apple with ascorbic acid derivatives, polyphenol oxidase inhibitors, and complexing agents. Journal of Food Science, 54(4), 997-1002. https://doi.org/10.1111/j.1365-2621.1989.tb07931.x
  102. Sapers, G.M., & Miller, R.L. (1998). Browning inhibition in fresh‐cut pears. Journal of Food Science, 63(2), 342-346. https://doi.org/10.1111/j.1365-2621.1998.tb15738.x
  103. Sarengaowa, Wang, L., Liu, Y., Yang, C., Feng, K., & Hu, W. (2022). Effect of ascorbic acid combined with modified atmosphere packaging for browning of fresh-cut eggplant. Coatings, 12(10), 1580. https://doi.org/10.3390/coatings12101580
  104. Schwartz, B., Olgin, A.K., & Klinman, J.P. (2001). The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast. Biochemistry, 40(9), 2954-2963. https://doi.org/10.1021/bi0021378
  105. Shrestha, L., Kulig, B., Moscetti, R., Massantini, R., Pawelzik, E., Hensel, O., & Sturm, B. (2020). Optimisation of physical and chemical treatments to control browning development and enzymatic activity on fresh-cut apple slices. Foods, 9(1), 76. https://doi.org/10.3390/foods9010076
  106. Siddiq, M., & Dolan, K. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum). Food Chemistry, 218, 216-220. https://doi.org/10.1016/j.foodchem.2016.09.061
  107. Sikora, M., & Świeca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160-1166. https://doi.org/10.1016/j.foodchem.2017.07.067
  108. Singh,, Suri, K., Shevkani, K., Kaur, A., Kaur, A., & Singh, N. (2018). Enzymatic browning of fruit and vegetables: A review. Enzymes in Food Technology: Improvements and Innovations, 63-78. https://doi.org/10.1007/978-981-13-1933-4_4
  109. Sommano, S.R., Chanasut, U., & Kumpoun, W. (2020). Enzymatic browning and its amelioration in fresh-cut tropical fruits. In Fresh-cut Fruits and Vegetables, (pp. 51-76): Elsevier. https://doi.org/10.1016/b978-0-12-816184-5.00003-3
  110. Susanto, S., Arif, A.B., Widayanti, S.M., & Matra, D.D. (2023). Ascorbic acid extends the shelf-life of Abiu (Pouteria caimito) fruit by maintaining quality and delaying browning symptoms. The Horticulture Journal, 92(3), 216-226. https://doi.org/10.2503/hortj.QH-053
  111. Suttirak, W., & Manurakchinakorn, S. (2010). Potential application of ascorbic acid, citric acid and oxalic acid for browning inhibition in fresh-cut fruits and vegetables. Walailak Journal of Science and Technology (WJST), 7(1), 5-14. https://doi.org/10.2004/wjst.v7i1.47
  112. Tang, Y.-Y., Guo, X.-N., & Zhu, K.-X. (2023). Inhibitory mechanism of sodium dihydrogen phosphate and ascorbic acid on browning in yellow alkaline noodles. Journal of Cereal Science, 112, https://doi.org/10.1016/j.jcs.2023.103706
  113. Tapre, A., & Jain, R. (2016). Study of inhibition of browning of clarified banana juice. Asian Journal of Dairy and Food Research, 35(2), 155-159. https://doi.org/10.18805/ajdfr.v35i2.10723
  114. Taqi, H.M., AL-shahery, Y.J., & Al-Abbasy, O.Y. (2024). Innovative isolation of nostoc minutum protein for antibacterial applications. Egyptian Journal of Aquatic Biology and Fisheries, 28(6), 2055-2071. https://doi.org/10.21608/ejabf.2024.400573
  115. Taylor, S.L., Bush, R.K., Selner, J.C., Nordlee, J.A., Wiener, M.B., Holden, K., Koepke, J. W., & Busse, W.W. (1988). Sensitivity to sulfited foods among sulfite-sensitive subjects with asthma. Journal of Allergy and Clinical Immunology, 81(6), 1159-1167. https://doi.org/10.1016/0091-6749(88)90885-8
  116. Telang, P.S. (2013). Vitamin C in dermatology. Indian Dermatology Online Journal, 4(2), 143-146. https://doi.org/10.4103/2229-5178.110593
  117. Tinello, F., & Lante, A. (2018). Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies, 50, 73-83. https://doi.org/10.1016/j.ifset.2018.10.008
  118. Tu,-J., Njus, D., & Schlegel, H.B. (2017). A theoretical study of ascorbic acid oxidation and HOO/O 2− radical scavenging. Organic & Biomolecular Chemistry, 15(20), 4417-4431. https://doi.org/10.1039/C7OB00791D
  119. Veltman, R., Kho, R., Van Schaik, A., Sanders, M., & Oosterhaven, J. (2000). Ascorbic acid and tissue browning in pears (Pyrus communis cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biology and Technology, 19(2), 129-137. https://doi.org/10.1016/S0925-5214(00)00095-8
  120. Vercammen, , Vanoirbeek, K.G., Lemmens, L., Lurquin, I., Hendrickx, M.E., & Michiels, C.W. (2012). High pressure pasteurization of apple pieces in syrup: microbiological shelf-life and quality evolution during refrigerated storage. Innovative Food Science & Emerging Technologies, 16, 259-266. https://doi.org/10.1016/j.ifset.2012.06.009
  121. Wagner, B.A., & Buettner, G.R. (2023). Stability of aqueous solutions of ascorbate for basic research and for intravenous administration. Advances in Redox Research, 9, https://doi.org/10.1016/j.arres.2023.100077
  122. Watada, A.E., Izumi, H., Luo, Y., & Rodov, V. (2005). Fresh-cut produce. Environmentally friendly technologies for agricultural produce quality, 149-203. https://doi.org/10.1201/9780203500361.ch7
  123. Wen,T., Liang, Y.Q., Chai, W.M., Wei, Q.M., Yu, Z.Y., & Wang, L.J. (2021). Effect of ascorbic acid on tyrosinase and its anti‐browning activity in fresh‐cut Fuji apple. Journal of Food Biochemistry, 45(12), e13995. https://doi.org/10.1111/jfbc.13995
  124. Xu, J., Zhou, L., Miao, J., Yu, W., Zou, L., Zhou, W., Liu, C., & Liu, W. (2020). Effect of cinnamon essential oil nanoemulsion combined with ascorbic acid on enzymatic browning of cloudy apple juice. Food and Bioprocess Technology, 13, 860-870. https://doi.org/10.1007/s11947-020-02443-8
  125. Yang, W., Song, X., Wang, Q., Wang, W., & Zhao, Z. (2024). Combined addition of citric acid and ascorbic acid significantly inhibits browning in Chinese yam (Dioscorea polystachya Turczaninow) processing. Journal of Food Quality, 2024(1), 1197382. https://doi.org/10.1155/2024/1197382
  126. Yates, A.A., Schlicker, S.A., & Suitor, C.W. (1998). Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. Journal of the American Dietetic Association, 98(6), 699-706. https://doi.org/10.1016/S0002-8223(98)00160-6
  127. Yi,, Kebede, B.T., Dang, D.N.H., Buvé, C., Grauwet, T., Van Loey, A., Hu, X., & Hendrickx, M. (2017). Quality change during high pressure processing and thermal processing of cloudy apple juice. Lwt, 75, 85-92. https://doi.org/10.1016/j.lwt.2016.08.041
  128. Yin,, Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., & Liang, L. (2022). Chemical stability of ascorbic acid integrated into commercial products: A review on bioactivity and delivery technology. Antioxidants, 11(1), 153. https://doi.org/10.3390/antiox11010153
  129. Yoruk, R., & Marshall, M.R. (2003). Physicochemical properties and function of plant polyphenol oxidase: a review 1. Journal of Food Biochemistry, 27(5), 361-422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x
  130. Younus, S.A., Mahdi, N.M., Al-Abbasy, O.Y., & Sheej Ahmad, O. (2025). Antioxidative effect of Maillard reaction products of spermine–sugar system on partially purified plum polyphenol oxidase. Journal of Food Science and Technology (Iran), 22(160), 227-241. https://doi.org/10.22034/fsct.22.160.227
  131. Yu,, Zhou, L., Sun, Y., Zeng, Z., Chen, H., Liu, J., Zou, L., & Liu, W. (2021). Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chemistry, 359, 129855. https://doi.org/10.1016/j.foodchem.2021.129855
  132. Zhang, Y., He, S., & Simpson, B. K. (2018). Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Current Opinion in Food Science, 19, 30-35. https://doi.org/10.1016/j.cofs.2017.12.007
  133. Zhou, F., Xu, D., Liu, C., Chen, C., Tian, M., & Jiang, A. (2021). Ascorbic acid treatment inhibits wound healing of fresh-cut potato strips by controlling phenylpropanoid metabolism. Postharvest Biology and Technology, 181, https://doi.org/10.1016/j.postharvbio.2021.111644
  134. Zhu, J., Wu, H., & Sun, Q. (2019). Preparation of crosslinked active bilayer film based on chitosan and alginate for regulating ascorbate-glutathione cycle of postharvest cherry tomato (Lycopersicon esculentum). International Journal of Biological Macromolecules, 130, 584-594. https://doi.org/10.1016/j.ijbiomac.2019.03.006
CAPTCHA Image