Food Biotechnology
Hediyeh Yousefipour; Mohammad Amin Mehrnia; Behrooz Alizadeh Behbahani; Hossein Jooyandeh; Mohammad Hojjati
Abstract
[1]Introduction: Herbs and spices, which are essential part of the human diet, have been used in traditional medicine to increase the flavor, color, and aroma of various foods and food products. Herbs and spices are also known as preservative, antioxidative, and antimicrobial agents. Plant extracts and ...
Read More
[1]Introduction: Herbs and spices, which are essential part of the human diet, have been used in traditional medicine to increase the flavor, color, and aroma of various foods and food products. Herbs and spices are also known as preservative, antioxidative, and antimicrobial agents. Plant extracts and their components with pathogen-growth suppression effect and little toxicity to host cells could be considered as excellent candidates for developing new antimicrobial agents. Trigonella foenum- graceum is an annual herbaceous plant with bright yellow and sometimes purple-white flowers. Therapeutic effects of this plant include analgesia, anti-cancer, and treatment of diabetes by lowering blood sugar and lowering blood lipids. In ancient Egypt, this plant was used to embalm the dead and incense. The seeds of the plant are used to treat leprosy, hemorrhoids, and relieve bronchitis. The seeds of this plant contain various compounds such as vitamins, amino acids, saponins, fatty acids, and flavonoids. The antimicrobial and antioxidant effects of T. foenum have been detrmined byvarious studies. This study was therefore aimed to produce the T. foenum extract and evaluate its antioxidant and antimicrobial properties. Materials and methods: Fifty g of powdered plant was added to 250 mL of water and stirred for 72 h. The solution was passed through the Whatman filter paper and then centrifuged at 3000 rpm for 10 min to discard the suspended solids. Next, a vacuum evaporator was used to remove the excess water and the obtained extract was packed and kept away from light at 4 °C. Total phenol and flavonoid contents were measured by colorimetric methods. The antimicrobial effect of the extract on Escherichia coli, Enterobacter aerogenes, Staphylococcus aureus, Bacillus cereus and Candida albicans was evaluated using disc diffusion agar (DDA), well diffusion agar (WDA), minimum inhibitory concentration (MIC) and minimum bactericidal /fungicidal concentration (MBC/MFC) methods. Interaction of aqueous extract and Chloramphenicol and Amphotericin B was also evaluated. Antioxidant effect of the extract was determined by ABTS, DPPH, and β-carotene/linoleic acid bleaching assay. Fourier-transform infrared spectroscopy (FTIR) was also used to identify the functional groups. Results and discussion: Total phenol and flavonoid contents of the extract were 46.60 mg GAE/g and 37.57 mg QE/g, respectively. The aqueous extract also showed antioxidant effects of 60.55, 55.53 and 50.40%, based on DPPH, ABTS methods and β-carotene/linoleic acid assay, respectively. T. foenum aqueous extract had the inhibitory effect on all examined microorganisms, at all concentrations (20, 40, 60 and 80 mg/mL). The antibiotic effect of chloramphenicol for E. coli, E. aerogenes, S. aureus and B. cereus was 13.30, 14.50, 18 and 19.10 mm, respectively, and the effect of this antibiotic for C. albicans was not measured. Also, the antibiotic effect of amphotericin B for C. albicans was 15.10 mm. Furthermore, the interaction of T. foenum aqueous extract with the antibiotic chloramphenicol presented a synergistic effect on the examined bacteria and led to a significant increase in inhibition zone diameter. Additionally, the interaction of the extract with antibiotics showed a synergistic effect on C. albicans. In infrared spectrum, peaks at 3370, 2965, and 1613 cm-1 were related to stretching vibration of O-H, C-H, C=C bonds of aromatic ring and aromatic groups of T. foenum aqueous extract. In general, the extract of T. foenum could be used as a natural antioxidant and antimicrobial agent in food and pharmaceutical industries.
Food Biotechnology
Bahareh Majdi; Mohammad Amin Mehrnia; Hassan Barzegar; Behrooz Alizadeh Behbahani
Abstract
Introduction: Antioxidants by Quenching free radicals and preventing lipid oxidation, retard spoilage, discoloration and rancidity of foods. Due to adverse effects of synthetic antioxidants such as carcinogenicity and liver injury, consumers’ attention toward natural antioxidants are increasing. ...
Read More
Introduction: Antioxidants by Quenching free radicals and preventing lipid oxidation, retard spoilage, discoloration and rancidity of foods. Due to adverse effects of synthetic antioxidants such as carcinogenicity and liver injury, consumers’ attention toward natural antioxidants are increasing. Turmeric (Curcuma longa) is a medicinal plant frequently used in food industry and pharmacology. In this research, chemical composition, structure and type of bond, antioxidant capacity, total phenol, flavonoid and cytotoxic effect of Turmeric essential oil (TEO) on colorectal cancer cells (HT29) were investigated. Materials and methods: TEO was extracted using Clevenger apparatus by aqueous distillation method. To identify chemical composition, 1 µl essential oil was injected in gas chromatography-mass spectrometry and essential oil composition and quantity were determined by comparing with standards. Functional groups and qualitative identification of turmeric essential oil were done using Fourier-transform infrared spectroscopy (FTIR) in range of 500 – 4000 cm-1. Antioxidant capacity of TEO was determined suing ABTS, DPPH and β-carotene/linoleic acid bleaching assay. Total phenol and flavonoid were measured by colorimetric methods. MTT test was used to find cytotoxic concentrations of TEO on colorectal cancer cell line (HT29). Results and discussion: The 18 compounds identified in TEO accounted for 97.91% and the highest compound was turmerone by 40%. The other compounds were curlone, zingiberene and benzene with 34, 8.30 and 4.18% respectively. Infrared spectrum in range of 3600-3400 cm-1 (specially 3516 cm-1) and peaks at 2930, 1621, 1515 and 1447 cm-1 were due to stretching vibration of O-H, C-H, C=O, C=C bonds of aromatic ring and aromatic groups of curcuminoids. 1515 cm-1 peak was due to stretching vibration of C=O bond of sesquiterpenes (turmerone). Observed peaks at 1378 and 1308 cm-1 confirmed the presence of alkanes or bending vibrations of CH3 groups in curcuminoids (curcumin). Antioxidant potential of TEO according to DPPH and ABTS methods and β-carotene bleaching assay was 25.15, 93.90 and 72.76 %, respectively. Total phenol and flavonoid content of TEO were 38.91 mg GAE/g and 87.9 mg QE/g. The results showed that by increasing essential oil concentration from 3.125 to 200 mg/mL survival rate of HT29 changed from 66.76 to 9.88%.
Negin Zangeneh; Hassan Barzegar; Mohammad Amin Mehrnia; Mohammad Noshad; Mohammad Hojjati
Abstract
Introduction: Celiac is an autoimmune digestive disorder caused by the consumption of gluten and the only way of treatment is consuming gluten free diet. Cake fortification due to its high consumption is pursuing by the bakery industry and the application of dietary fibers is increasing due to its relation ...
Read More
Introduction: Celiac is an autoimmune digestive disorder caused by the consumption of gluten and the only way of treatment is consuming gluten free diet. Cake fortification due to its high consumption is pursuing by the bakery industry and the application of dietary fibers is increasing due to its relation to human health. In this research, the effect of adding different parts of oleaster (core powder, peel and flesh powder and whole powder) at different concentrations (5, 10 and 20%), on physicochemical and sensory properties of gluten free cakes were investigated. Flour structure, functional properties, unique taste, dietary fiber, minerals and phenolic content of oleaster has made it a good ingredient in bakery products, yoghurt, ice cream, baby foods, chocolate and cookies. Oleaster due to the high content of fiber and minerals could be used in preparing gluten free functional foods. Due to the high demand for gluten free products for celiac patients, our goal was formulation optimization of gluten free cake based on corn flour and oleaster. Materials and methods: Corn flour (Tarkhineh, Tehran), sugar (Zarin Alborz), vanilla and baking powder (Bartar Co.), egg (Telavang), sunflower oil (Ladan) and oleaster were purchased from a local shop in Ahvaz. After cleaning and removing impurities of oleasters, peel, flesh and core were separated, grinded and passed through mesh no. 35. Samples were kept in plastic bags at room temperature. Corn flour was partially (5, 10 and 20%) substituted with Powder of core, peel, flesh and whole oleaster. Moisture, pH, fat, protein, fiber, specific volume, textural properties, color and sensory properties of cakes were determined. Data were analyzed using a completely randomized design in SPSS and graphs were plotted using Excel. Results and discussion: Low nutritional value and low diversity of gluten free products are major problems for celiac patients. Food scientists are trying to increase the nutritional value of such products through the addition of functional ingredients. Results of the present research showed a significant effect of adding oleaster powder on the physicochemical and sensory properties of free gluten cake samples. By increasing oleaster powder, moisture content of cake samples was increased and the highest moisture content was seen in samples containing peel and flesh powder which is due to presence of hygroscopic constituents like fibers and sugars. The addition of oleaster powders was significantly increased ash of samples which is due to the higher mineral content of oleaster comparing to corn flour. Evaluation of the browning index showed a significant effect of oleaster powder. Crust browning index increased by increasing the powder level in all types of cake samples. The highest browning index was seen in samples containing 20% core powder and the lowest was in the control. The browning index increased because of a rising Maillard reaction due to the higher amount of monosaccharides in oleaster powder. By increasing oleaster powder, firmness of samples increased and the lowest and highest firmness was seen in samples containing peel and flesh and core powder respectively. During storage time, by rising oleaster powder level, firmness increased. A significant increase of firmness was due to decrement of volume and thickening air bubbles walls in cakes crumb. By increasing oleaster powder in cakes, fat and protein content decreased and fiber increased. The lowest fat content was seen in samples containing 20% core powder. Sensory evaluation of cakes approve that oleaster powder could be used as a functional ingredient in cake formulations due to its nutritional and functional properties.
Hadi Tanavar; Hassan Barzegar; Behrooz Alizadeh Behbahani; Mohammad Amin Mehrnia
Abstract
Introduction: Free radicals activity and their products of their oxidation can cause undesired feeling and nutritional effects such as, awful taste, destroying vitamins and destruction of essential fatty acids. These compounds which are toxic substances and damage the genetic material of cells causing ...
Read More
Introduction: Free radicals activity and their products of their oxidation can cause undesired feeling and nutritional effects such as, awful taste, destroying vitamins and destruction of essential fatty acids. These compounds which are toxic substances and damage the genetic material of cells causing heart and cardio vascular diseases and different type of cancer. Antioxidats absorb free radicals, so they can decelerate oxidation speed, then delete them to save the body from undesirable effects. Pooneh which is called scientifically Mentha pulegium belongs to lamiaceae group. The aim of this study was evaluating chemical compounds, antioxidant activity, total phenolic and cytotoxicity of Mentha pulegium essential oil (MPEO) on cell line of colon and gut cancer. Materials and methods: In this study, after extraction of MPEO using condensation the essential oil chemical composition were identified with gas chromatography-mass spectrometer (GC-MS). Antioxidant activity was measured with radical inhibition ability method DPPH, ABTS and also their resistance against linoleic acid oxidation and changing β-carotene color, was considered. The evaluation of total phenolic composition was carried out using folin-ciocalteu method. To do this, the concentration of 1000, 10000, 1200 and 1400 of MPEO with alcohol was prepared. One mL of each concentration was added to 2.5mL of folin-ciocalteu reagent. After 2.5 minutes, 2ml sodium carbonate was added and mixed well. The rate of sample absorbtion after one hour was 725 nm. Determination of flavonoids range was done with aluminum chloride. MPEO cytotoxicity effects (1, 3.125, 6.25, 12.5, 25, 50, 100, 200 mg/ml) on colon cancer cell line (HT29) was performed using MTT method. In this method 30 mL of MTT solution with 5 mg/mL was add to all wells and maintain for 3 hours in carbon dioxide. After removing environment, 200µl DMSO was add to each well and the rate of absorbtion in 570 nm was read usingELISA/microplate reader device. Cell aliveness curve was drawn. Results and discussion: The results showed that MPEO had 25 compounds, dl-limonene 28.44%, D-carvone 18.76%, Eucalyptol 8.86% and pulegone 8.65% were the top components. The rata of Mentha pulegium free radicals control with DPPH and ABTS was 51.5% and 53.43% respectively. The amount of MPEO resistance against oxidation of linoleic acids and color changing in β-carotene was 59.22%. Total phenolic was equal to 73.35 mg gallic acid/ml. The cytotoxicity effects results showed, the percent of HT29 aliveness was 100, 70.21, 61.26, 51.98, 35.12, 24.44, 18.65 and 10.92 respectively. Based on the results, increasing in MPEO concentration, caused increasing in HT29 cell line and decreasing percentage of aliveness. The most cells toxicity was in 200 mg/mL and the less was in 1 mg/mL.According to the results, in this study MPEO had suitable antioxidant activity, so we can use Mentha pulegium as an alternative for synthesis preservatives in food industry.
Negin Zangeneh; Hassan Barzegar; Behrooz Alizadeh Behbahani; Mohammad Amin Mehrnia
Abstract
Introduction: Spirulina platensis belongs to the Division of Cyanobacteria and the family of Oscillatoriaceae. It is autotroph and photo-synthesizer and can be reproduced through double cell division. Spirulina platensis is a filamentous blue-green multi-cellular microalgae naturally occurring in the ...
Read More
Introduction: Spirulina platensis belongs to the Division of Cyanobacteria and the family of Oscillatoriaceae. It is autotroph and photo-synthesizer and can be reproduced through double cell division. Spirulina platensis is a filamentous blue-green multi-cellular microalgae naturally occurring in the tropical and alkaline lakes of America, Mexico, Asia and central Africa. It contains unique and extraordinary nutrients which can be used in the production of functional foods. Among bakery and flour products, cake has a relatively high diversity and long shelf-life and is famous among a variety of people, especially children. Since the knowledge associated with the enrichment of sponge cake, as a popular product among different communities (in particular, children) is limited, the aim of the present research is to produce a sponge cake enriched with spirulina platensis, and to examine its nutritional, physicochemical and sensory properties. Materials and methods: In this research, the effect of Spirulina platensis at four levels (0, 0.5, 1 and 1.5%) was investigated on the nutritional properties (protein, fat, iron, zinc and copper contents), physicochemical properties (moisture content, pH, total phenol content, antioxidant potential, textural properties and color indices) and sensory attributes (odor, color, texture, flavor and taste, chewiness and total acceptance) of the sponge cake samples prepared with wheat flour. Results and discussion: Results showed that algae powder was rich in protein (56.33%) and iron (13.18 ppm). The addition of Spirulina platensis to the sponge cake caused reduction in its moisture content during storage (days 1, 5 and 10). The results also revealed that the different levels of algae addition brought about significant differences in the moisture content of the samples (p<0.05). The results also indicated that the protein, fat and mineral contents as well as other nutritional properties of the sponge cake increased as the algae content was elevated. The total phenol content of the cake samples was also raised with an increase in the algae powder level, compared with the control. This could be attributed to the large amounts of phytochemical and biological active substances such as flavonoids, sterols and other phenolic compounds. The results demonstrated that the porosity values of the control and the sample containing 1.5% of the algae were not significantly (p<0.05) different. The percentage of porosity was equal to 24.94, 37.99, 33.39 and 27.81 in the control and the samples containing 0.5, 1 and 1.5% of Spirulina platensis. Overall, the sample with 0.5% of the algae and the control had the highest and lowest porosity percentage respectively. As the algae level rose, the textural parameters (hardness, cohesiveness and gumminess) of the sponge cake increased on days 1, 5 and 10 of the storage period. The colorimetry results showed that the effect of Spirulina platensis was significant (p<0.05) on color parameters (L*, a* and b*). Sensory evaluation revealed that the sponge cake with 0.5% of the microalgae was the most acceptable among the samples. The green color of the cake crumb was attractive to the panelists and a comparison between the total sensory scores indicated that the incorporation of Spirulina platensis into the sponge cake was desirable from the panelists` points of view. The results of this study demonstrated that the addition of Spirulina platensis to sponge cake for the enrichment of this product, caused an increase in its protein and mineral contents, antioxidant potential, in addition to other functional ingredients naturally occurring in this algae. The results revealed that different levels of this algae (0.5, 1, and 1.5%) did not significantly affect the cake texture, however, had a significant impact on its color. Incorporation of Spirulina platensis into sponge cake reduced its L*, a* and b*, which was highly noticed by the panelists. Therefore, it can be declared that enrichment of sponge cake, as a popular product among different people of societies, particularly children, is a desirable and easy way of transferring the useful and valuable compounds of this algae to human.
Mohammad Amin Mehrnia; Hassan Barzegar; Leila Hagh jou
Abstract
Central composite design response surface methodology was used to optimize polysaccharide extraction from olive leaves. Effect of three independent variables [extraction time (3- 7 hours), extraction temperature (60- 100°C) and water-to-raw material ratio (5-25 mL/g)] on extraction yield were studied. ...
Read More
Central composite design response surface methodology was used to optimize polysaccharide extraction from olive leaves. Effect of three independent variables [extraction time (3- 7 hours), extraction temperature (60- 100°C) and water-to-raw material ratio (5-25 mL/g)] on extraction yield were studied. Extracted polysaccharide was evaluated for antioxidant properties, total phenolic and flavonoid content and its structure and functional groups were studied using FTIR. Rheological properties and flow behavior of polysaccharide were determined by fitting to power law model. The most important parameter in experimental ranges was temperature and the lowest effect was seen in extraction time. Highest extraction yield was obtained at extraction time of 2 hours, extraction temperature of 80.96°C and water-to-raw material ratio of 17.94 mL/g. Antioxidant properties of extracted polysaccharide were measured using DPPH radical at 517 nm that showed notable antioxidant properties. Rheological property of extracted polysaccharide was studied at 1, 2.5 and 5% concentration. Results showed that at high concentration, polysaccharide shows shear thinning behavior. One of the most important obstacles in native polysaccharide applications is their extraction yield. Extract of olive leaf polysaccharide is highly affected by extraction temperature. Extracted polysaccharide showed good antioxidant properties comparing to BHT and phenolic extract of olive leaf. Moreover it could be used for increasing solution viscosity at higher concentrations.
Mohammad Noshad; Mohammad Amin Mehrnia; Nasim Dehghan
Abstract
Introduction: Pectin is a type of water-soluble hetero-polysaccharide that is present in the primary cell wall of plant and is used as a jellying, thickening and stabilizing agent in various food products. The degree of esterification is the most important determinant of the use of pectin in the food ...
Read More
Introduction: Pectin is a type of water-soluble hetero-polysaccharide that is present in the primary cell wall of plant and is used as a jellying, thickening and stabilizing agent in various food products. The degree of esterification is the most important determinant of the use of pectin in the food products, according to pectin is divided into two groups: high-esterification pectin (50% degree of esterification) and pectin with degree low esterification (degree of esterification less than 50 %(. Considering the high use of pectin in the food products, researchers are now looking for new sources of pectin extraction, among which the use of food waste has been considered high, because the waste of food factories is a major challenge for food manufacturers. Eggplant (Solanum melongena) belongs to the Solanaceae family, which is used extensively in the world. The plan species is believed to have originated in India, where it continues to grow in southern and eastern Asia. The skin and warhead of this product, which is discarded as waste, can be used as a valuable source for pectin extraction. The most commonly used methods for pectin extracting are the use of hot water, along with acids, which is a time-consuming process and the waste discard of this method is environmentally problematic. Therefore, the use of new methods such as ultrasound has been considered by researcher to minimize the limitations of the traditional method of pectin extracting. The purpose of this study was to extract pectin from eggplant waste using ultrasound and evaluate its physicochemical properties. Material and methods: The waste of eggplant from restaurant of agricultural sciences and natural resources university of Khuzestan were prepared. The waste was dried in an oven at 60 ºC to reach constant weight. The dried waste was powdered using a grinder and passed through the sieve. The ultrasound was used to extract pectin from eggplant waste (skin and warhead). For this purpose, the effect of ultrasound time (40-80 min) and dry matter /solvent ratio (1:10 – 1:30 g/ml) on extraction efficiency degree of esterification of extracted pectin were investigated. The FTIR (wavelengths scanned 4000-400 cm−1) and rheological behavior were studied to evaluate the performance characteristics of the extracted pectin. Analysis of variance (ANOVA) procedure followed by Duncan’s test using SPSS 16 (SPSS Inc., Chicago, IL, USA) software was applied to determine the significant difference (P < 0.05) between treatment means. Result & discussion: Based on results, increasing the extraction time had a significant effect (P<0.05) on the pectin extraction, so that the increase in extraction time from 40 to 60 min increased the extraction efficiency from 14.05 ±0.21 to 29.35±0.21 (%), which is probably due to the fact that the cavitation causes the cell wall to break down and more solvent penetrates the cell matrix, which results in increased extraction of pectin. The highest efficiency of pectin was obtained in the dry matter /solvent ratio (1:10 g/ml) and 60 min. The highest degree of esterification (84.18 ± 0.1 %) was obtained in the dry matter /solvent ratio (1:20 g/ml) and 60 min. Also, the degree of esterification of the obtained pectin varied from 67.69 ± 0.02 to 84.14 ± 0.1 %), which indicated the high quality of pectin was extracted. Due to the fact that the steric bonds are more unstable than acidic hydrolysis in comparison with glycosidic bonds, the higher degree of esterification indicates less damage to the pectin structure during the extraction process. FTIR showed all of the pectin's specific spectra and abundance of methoxy groups in extracted pectin. The FT-IR spectra show the characteristic absorption of -CH at the ranges of 3000-2800 cm-1 and at 1421 cm-1, while the wide band at 3406 cm–1 was assigned to the -OH stretching vibration. The wide band at the ranges of 1700-1600 cm-1 can be due to the stretching vibrations of the C=O bonds in the backbone of crude polysaccharide because of presence of uronic acid. Existence of a peak at 1200-900 cm-1 indicates that pectin contained multiple vibrations of glycosidic (C–O-C) and pyranoid (C=O) linkages due to the characteristic of the pyranose form of glucosyl residues. The apparent viscosity of the extracted pectin solution decreased with increasing shear rate (0.5 to 10 s-1) while in the higher shear rate (10 to 100 s-1), the apparent viscosity of the pectin solution remained almost constant. This process shows that the produced pectin solution at low shear rate exhibits pseudo plastic behavior, while at highest shear rate exhibits Newtonian behavior. These results indicated that eggplant waste could be used as a good source of high-performance pectin.
Mona Nazari; Mohammad Amin Mehrnia; Hossein Jooyandeh; Hassan Barzegar
Abstract
Water in oil emulsions could be used for preparing low fat food products or encapsulating water soluble sensitive constituents. In this research, vitamin C loaded water in oil microemulsions prepared using spontaneous method without any co-surfactant. In spontaneous method, microemulsions are formed ...
Read More
Water in oil emulsions could be used for preparing low fat food products or encapsulating water soluble sensitive constituents. In this research, vitamin C loaded water in oil microemulsions prepared using spontaneous method without any co-surfactant. In spontaneous method, microemulsions are formed based on surfactant affinity toward continues phase and are thermodynamically stable. Results showed that by increasing vitamin C concentration, droplets size of emulsions increased from 66.7 nm for pure water to 214.3 nm for 3% loaded microemulsions and poly dispersity index increased from 0.15 to 0.501. Visual appearance of microemulsions changed from transparent for pure water containing microemulsions to opaque for 3% vitamin C loaded emulsions. By increasing vitamin C concentration, viscosity decreased from 115.4 to 87.9 mPa.s. This research showed that up to 3% vitamin C containing microemulsions could be prepared without co-surfactants.
Mohammad Amin Mehrnia; Aigin Bashti; Fakhreddin Salehi
Abstract
In this research, an experimental and modeling study on mass transfer analysis during infrared drying of quince was undertaken. In the experimental part, the effects of various drying conditions in terms of infrared radiation power (150-375 W) and distance (5-15 cm) on drying characteristics of quince ...
Read More
In this research, an experimental and modeling study on mass transfer analysis during infrared drying of quince was undertaken. In the experimental part, the effects of various drying conditions in terms of infrared radiation power (150-375 W) and distance (5-15 cm) on drying characteristics of quince were investigated. Both the infrared power and distance influenced the drying time of quince slices. Moisture ratios were fitted to 8 different mathematical models using nonlinear regression analysis. The regression results showed that the logarithmic model satisfactorily described the drying behavior of quince slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 1.15 and 3.72 ×10-8 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased. Chroma and hue values were in ranges between 43.28 and 46.99, 80.82° and 86.14°, respectively.