Food Technology
Kimia Goharpour; Fakhreddin Salehi; Amir Daraei Garmakhany
Abstract
Falafel is considered as an inexpensive and nutritious product that contains various plant substances, vitamins, dietary fibers, and phenolic compounds. The aim of this research was to investigate the impact of sprouting time on the physicochemical characteristics of sprouted chickpea flour. Also, the ...
Read More
Falafel is considered as an inexpensive and nutritious product that contains various plant substances, vitamins, dietary fibers, and phenolic compounds. The aim of this research was to investigate the impact of sprouting time on the physicochemical characteristics of sprouted chickpea flour. Also, the effects of sprouting time on the physicochemical characteristics and sensory properties of falafel prepared from sprouted chickpea flour were examined. The finding of this research indicated that the sprouting process significantly increased the total phenolic content (from 284.17 to 720.98 μg gallic acid/g dry), antioxidant capacity (from 77.55% to 93.35%), and redness (from 7.65 to 11.39) of chickpea flour (p<0.05). While, it significantly decreased the lightness (from 70.81 to 57.07) and yellowness (from 43.71 to 25.62) of chickpea flour (p<0.05). The total phenolic content and antioxidant capacity of falafel prepared from flour of sprouted chickpea for two-days (48 hours) were significantly higher than those prepared from unsprouted chickpeas flour (p<0.05). The volume of falafel samples produced from unsprouted, one-day sprouted, and two-day sprouted chickpea flours was 18.75, 16.60, and 15.40 cm3, respectively. The minimum oil uptake was observed in the sample prepared from chickpeas sprouted for two-days (p<0.05). The sprouting process did not have a significant impact on the firmness, cohesiveness, and chewiness of the falafel (p>0.05). In general, utilizing of one-day (24 hours) sprouted chickpea flour for the production of falafel is recommended due to the best flavor, the highest overall acceptance score, high content of phenolic compounds, high antioxidant capacity, and low oil absorption.
Food Engineering
Moein Inanloodoghouz; Fakhreddin Salehi; Mostafa Karami; Ashraf Gohari Ardabili
Abstract
IntroductionFruits have a limited harvest season, and the amount of their waste is significant. Drying extends the shelf life of food, and the infrared dryer reduces the time and cost of the drying process. In this study, the effect of sonication at different powers and temperatures along with edible ...
Read More
IntroductionFruits have a limited harvest season, and the amount of their waste is significant. Drying extends the shelf life of food, and the infrared dryer reduces the time and cost of the drying process. In this study, the effect of sonication at different powers and temperatures along with edible coating with xanthan and wild sage seed gums on the drying process of cornelian cherry by an infrared dryer was investigated. Materials and MethodsSolutions of xanthan and wild sage seed gums were used for coating of fresh cornelian cherry. Xanthan gum powder (food grade) was purchased from FuFeng Co. (China). Wild sage seed gum was extracted and used in powder form after drying and grinding to prepare the gum solution. In this study, various concentration of gums solutions (xanthan and wild sage seed) were first prepared in a graduated glass beaker and placed in an ultrasonic bath (Backer vCLEAN1-L6, Iran). The fruits were immersed in the gum solutions (inside the beakers) and sonicated for 5 min (40 kH). Infrared dryer with an infrared radiation source (250 W, near-infrared (NIR), Noor Lamp Company, Iran) was used for drying samples. The distance of samples from the radiation lamp was 10 cm. After each pretreatment (sonication and coating), the samples were dried, until reaching a constant weight. The mass changes of samples were recorded using a Lutron GM-300p digital balance (Taiwan). The rehydration tests were conducted with a water bath (R.J42, Pars Azma Co., Iran). Dried samples were weighed and immersed for 30 minutes in distillated water in a 200 ml glass beaker at 50°C. Then, the extra moisture was drained for 30 s and the samples were re-weighed. The rehydration ratio values (%) of dried samples were determined as the ratio of the final weight of rehydrated samples over the dried samples weight × 100. The color of the cornelian cherry was calculated by determining the lightness (L*) and chromaticity (redness (a*) and yellowness (b*)), and was measured using a scanner (Hp Scanjet 300, China) and Image J software (V.1.42e, USA). The Folin-Ciocalteu (Folin-Ciocalteu's phenolics reagent, Sigma-Aldrich, USA) method was followed for measuring the total phenolics content of dried cornelian cherry. The absorbance of samples (765 nm, UV-VIS spectrophotometer, XD-7500, Lovibond, Germany) was compared with the Gallic acid standard curve. The results were expressed as mg GAE/g dry matter. Effect of applied power by the ultrasonic device at three levels of 0, 75, and 150 W and the effect of temperature at three levels of 20°C, 40°C, and 60°C on the rehydration and total color difference index of dried cornelian cherry were investigated. Also, the effect of coating with xanthan and wild sage seed gums on preserving phenolic compounds, antioxidant activity, and sensory properties of the product was evaluated. Results and DiscussionThe average drying time of uncoated cornelian cherry, coated with xanthan gum, and wild sage gum was 62 min, 48.7 min, and 48.4 min, respectively. The examined treatments in this research did not have a significant effect on rehydration change of the dried product. Ultrasonic pretreatment at both 75 and 150 W powers had a decreasing effect on the color changes, which indicates improvement of color and prevention of color change and decrease in desirability. The effect of coating on color changes was also investigated, and the amount of color changes in the uncoated, coated with xanthan gum and wild sage seed gum samples was equal to 26.71, 26.02, and 31.36, and there was no significant difference between them (p>0.05). Using wild sage seed gum preserved more of phenolic and antioxidant compounds. The total phenolics content of fresh cornelian cherry, and dried samples including market, without coating, coated with xanthan gum, and coated with wild sage seed gum was 23.0, 4.7, 0.8, 9.8, and 12.1 mg gallic acid/g, respectively. The market sample had a significant difference with other dried samples dried by infrared (p<0.05). The sample from the market had the least DPPH radical scavenging activity (p<0.05). The market sample scored as the lowest sensory evaluation and had a significant difference with all samples in all sensory attributes (p<0.05). ConclusionFrom the panelist’s point of view, the sample coated with wild sage seed gum was the best sample, and the highest score for sensory parameters and overall acceptance was associated with this sample.
Food Engineering
Fakhreddin Salehi; Moein Inanloodoghouz; Sara Ghazvineh; Parisa Moradkhani
Abstract
IntroductionSour cherries (Prunus cerasus L.) are relatively diverse and broadly distributed around the world, being found in Asia, Europe, and North America. Sour cherries have unique anthocyanin content, and rich in phenolic compounds. The fruits are generally used for processing purposes, such as ...
Read More
IntroductionSour cherries (Prunus cerasus L.) are relatively diverse and broadly distributed around the world, being found in Asia, Europe, and North America. Sour cherries have unique anthocyanin content, and rich in phenolic compounds. The fruits are generally used for processing purposes, such as for production juice and jam. The fruits of sour cherries can also be frozen and dried. One of the best methods for the preservation of agricultural product is drying, which involves removing water from the manufactured goods. Dried sour cherries have a long shelf life and therefore may be a fine alternative to fresh fruit all year round. There are no reports on the effect of microwave pretreatment on the hot air drying kinetics of sour cherries in the literature. Hence, the purpose of this study was to estimate the impacts of microwave pretreatment on the total phenolics, drying time, mass transfer kinetic, effective moisture diffusivity, total color difference index, shrinkage and rehydration of sour cherry. In addition, the moisture ratio changes of sour cherry during drying were modeled. Material and MethodsSour cherries were purchased from the market at Bahar, Hamedan Province, Iran. The average diameter of fresh sour cherries was 1.6 cm. In this study, the water content of fresh and dried sour cherries was calculated using an oven at 103°C for 5 h (Shimaz, Iran). In this research, the effect of microwave time on the drying time, effective moisture diffusivity coefficient and rehydration of sour cherries was investigated and drying kinetics were modeled. To apply the microwave pretreatment on the sour cherries, a microwave oven (Gplus, Model; GMW-M425S.MIS00, Goldiran Industries Co., Iran) was used under atmospheric pressure. In this work, the influence of the microwave pretreatment time at five levels of 0, 30, 60, 90, and 120 s (power=220W) on the cherries was examined. After taking out the treated sour cherries from microwave device, the samples were placed in the hot-air dryer (70°C) as a thin layers. The dehydration kinetics of sour cherries were explained using 7 simplified drying equations. Fick's second law of diffusion using spherical coordinates was used to calculate the moisture diffusivity of sour cherries at various hot-air drying conditions. The rehydration test was conducted with a water bath (R.J42, Pars Azma Co., Iran). Dried sour cherries were weighed and immersed for 30 min in distilled water in a 250 ml glass beaker at 50°C. Results and DiscussionThe results showed that microwave treatment led to an increase in moisture removal rate from the sour cherries, an increase in the effective moisture diffusivity coefficient, and, consequently, a decrease in drying time. By increasing the microwave time from 0 to 12 s, the average drying time of sour cherries in the hot-air dryer was decreased from 370 min to 250 min (p<0.05). The average effective moisture diffusivity coefficient calculated for the samples placed in the hot-air dryer was 4.25×10-10 m2/s. Increasing the microwave time from 0 to 120 s increased the average effective moisture diffusivity coefficient by 85%. The maximum amount of phenolic was related to the sample treated with microwave for 90 seconds. Microwave treatment time had no significant effect on the rehydration of dried sour cherries. ConclusionKinetic modeling of weight changes of sour cherries during drying was carried out using models in the sources, followed the Page model was selected as the best model to predict moisture ratio changes under the selected experimental conditions. The mean values of sum of squares due to error, root mean square error, and r for all samples ranged from 0.001 to 0.007, 0.005 to 0.017, and 0.997 to 0.999, respectively. Generally, 120 s pre-treatment by microwave is the best condition for drying sour cherries.
Food Engineering
Ghazale Amini; Fakhreddin Salehi; Majid Rasouli
Abstract
Introduction: The dispersion of water soluble hydrocolloids (gums) in the aqueous system provides great technical importance, because they can improve the gel or enhance the thickening properties of food products. Wild sage seeds have significant amounts of gum with good functional properties that after ...
Read More
Introduction: The dispersion of water soluble hydrocolloids (gums) in the aqueous system provides great technical importance, because they can improve the gel or enhance the thickening properties of food products. Wild sage seeds have significant amounts of gum with good functional properties that after extracting from seeds (mucilage) and drying, can be used in formulation of various products (Salehi, 2017, 2020a). The physicochemical properties and rheological behaviour of seed gums depend on the method and condition of drying. Also, the color of dried product is an important quality factor, which is affected by drying conditions (Amid and Mirhosseini, 2012; Nep and Conway, 2011). For example, effect of different drying methods (oven drying (40-80°C), freeze drying and vacuum oven drying) on rheological behaviour, color and physicochemical characteristics of BSM were investigated by Salehi and Kashaninejad (2017). Drying is one of the simply available and the most common processing approach that has been used traditionally for preservation of food product. One of the best way to reduce the drying time is to use IR radiation heating. IR methods could be used as substitution to the current drying methods for producing high-quality dried hydrocolloids. IR heating has many advantages include high heat transfer rate, uniform heating, low processing time, high efficiency (80-90%), lower energy consumption, lower energy costs, and improves final product quality (Aktaş et al., 2017; Salehi, 2020c). The performance of artificial neural networks (ANN) as an analytical alternative to conventional modeling techniques was reported by some researchers. They reported that these approaches are able to estimate the drying kinetics of various fruits and vegetableswith high precision. It has been shown that nonlinear approaches based on ANN are far better in generalization and estimation in comparison to empirical models (Bahramparvar et al., 2014; Salehi, 2020b; Zhang et al., 2014). It is difficult to predict the combined effects of treatment time, IR power, lamp distance and mucilage thickness on drying kinetics (moisture content and moisture ratio) of fruits and vegetablesusing conventional models. Therefore, the target of this study was to investigate the effect of IR dryer parameters on moisture content and moisture ratio of wild sage seed mucilage during IR drying and studying the performance of ANN method for estimation of these parameters. Materials and methods: Wild sage seeds was physically cleaned and all foreign stuffs were removed. Then, the pure wild sage seeds were immersed in water for 20 min at a seed/water ratio of 1:20 at 25°C and pH = 7. In the next step, the gum was separated from the inflated seeds by passing the seeds through an extractor (M-J-376-N, Nikko Electric Industry Company, Iran) with a rotating disc which scratches the mucilage layer on the seed surface. The initial moisture content (MC) of WSSM was 99.4% (wet basis). Finally, the obtained WSSM was immediately placed into IR dryer. In this study, for wild sage seed mucilage drying, infrared radiation (IR) method was used. The effect of infrared lamp power (150, 250 and 375 W), distance of samples from lamp (4, 8 and 12 cm) and mucilage thickness (0.5, 1 and 1.5 cm) on drying time of wild sage seed mucilage were investigated. Results and Discussion: The results of wild sage seed mucilage drying using infrared method presented that by increasing the lamp power and decreasing the sample distance from the heat source, drying time was decreased. With lamp distance increasing from 4 to 12 cm, the average drying time of wild sage seed mucilage increased from 72.04 minutes to 160.81 minutes. When it comes to sample thickness, we found that by increasing the thickness of mucilage (0.5 to 1.5 cm) drying time of sample increased from 55.59 to 173.67 min. The process was modeled by an artificial neural network with 4 inputs (radiation time, lamp power, lamp distance and thickness) and 2 output (moisture content (MC) and moisture ratio (MR)). The results presented that mucilage drying time significantly increased by decreasing power of lamp (375 up to 150 W) and increasing the heat source distance from sample (4 to12 cm). The results of artificial neural network modeling showed that the network with 8 neurons in a hidden layer and with using the sigmoid activation function could predict the moisture content and moisture ratio of wild sage seed mucilage during infrared drying in various times (r=0.974 for MC and r=0.997 for MR).
Mohammad Amin Mehrnia; Aigin Bashti; Fakhreddin Salehi
Abstract
In this research, an experimental and modeling study on mass transfer analysis during infrared drying of quince was undertaken. In the experimental part, the effects of various drying conditions in terms of infrared radiation power (150-375 W) and distance (5-15 cm) on drying characteristics of quince ...
Read More
In this research, an experimental and modeling study on mass transfer analysis during infrared drying of quince was undertaken. In the experimental part, the effects of various drying conditions in terms of infrared radiation power (150-375 W) and distance (5-15 cm) on drying characteristics of quince were investigated. Both the infrared power and distance influenced the drying time of quince slices. Moisture ratios were fitted to 8 different mathematical models using nonlinear regression analysis. The regression results showed that the logarithmic model satisfactorily described the drying behavior of quince slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 1.15 and 3.72 ×10-8 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased. Chroma and hue values were in ranges between 43.28 and 46.99, 80.82° and 86.14°, respectively.
Mohammadmahdi Seyedabadi; Mahdi Kashani-Nejad; Alireza Sadeghi Mahoonak; Yahya Maghsoudlou; Fakhreddin Salehi
Abstract
The turbidity of sour orange juice after juice extraction affects on quality, shelf-life and concentration of juice. Therefore, juice clarification is an important operation in the fruit processing industry. The goal of this study was evaluating the effect of membrane operation parameters including pressure ...
Read More
The turbidity of sour orange juice after juice extraction affects on quality, shelf-life and concentration of juice. Therefore, juice clarification is an important operation in the fruit processing industry. The goal of this study was evaluating the effect of membrane operation parameters including pressure (120-220 kPa) and temperature (25-35 ºC) on the permeate flux and hydraulic resistance of sour orange juice during membrane clarification. Response surface methodology (RSM) was used to optimizing the operating parameters. Results of the experiments showed that the permeate flux was raised with increasing of temperature, but total hydraulic resistance (RT), concentration polarization resistance (Rcp) and gel layer resistance (Rg) was decreased in mentioned condition. The permeate flux, membrane resistance (Rm), RT, Rcp and fouling index was raised with increasing in pressure. The Rm and fouling index are showed different behavior depending on temperatures level. Results of process optimization indicated that the best conditions to maximize of permeate flux, and to minimize of fouling index and RT achieved at 35 ºC and 120 kPa for a maximum desirability of 0.761.