Zahra Sheikholeslami; Mahdi Karimi; Bahareh Sahraiyan
Abstract
Introduction: Doughnuts are fried foods that absorb significant amounts of oil, and commercial doughnuts made from wheat flour typically contain 24 to 26 percent oil. Fresh doughnut is soft and has a pleasant taste and aroma. One of the main ways to enrich bakery products is to mix wheat flour with other ...
Read More
Introduction: Doughnuts are fried foods that absorb significant amounts of oil, and commercial doughnuts made from wheat flour typically contain 24 to 26 percent oil. Fresh doughnut is soft and has a pleasant taste and aroma. One of the main ways to enrich bakery products is to mix wheat flour with other flours. Triticale has a higher
percentage of protein compared to wheat, rice, corn, rye and oats and is in good condition in terms of essential amino acids. Lysine in triticale is higher than wheat and less than rye. Also triticale has the same amount of vitamins as wheat. The positive properties of gums extracted from native seeds such as basil can be used to reduce oil absorption and improve shelf- life of fried bakery products. Basil seeds are soaked in water due to the presence of polysaccharides, the outer pericarp swells and turns into a gelatinous substance. Green cardamom with scientific name of Elettaria cardamomum belongs to Zingiberaceae family. Cardamom is one of the most widely used aromatic condiments in some foods, breads, sweets, especially jams. 23 compounds have been identified in green cardamom essential oil, the highest composition (31.53%) belonging to Eucalyptol. Therefore, in this study, enrichment the wheat flour of fried fermented doughnuts by replacing part of wheat flour with triticale flour, reducing oil absorption by using basil seed gum and improving antioxidant and sensory properties and reducing fungal activity in the presence of green cardamom essential oil were investigated.
Material and Methods: In the first part of this research, Triticale flour at 0, 15 and 30% and Basil seed gum at 0, 0.50 and 1% were used to improve the quality and decrease oil absorption of fermented doughnut. Control doughnut formulation had 500 g wheat flour, 20 g milk powder, 4 g salt, 80 g oil, 12 g baker’s yeast, 80 g sugar, 500 ml water, 100 g egg and 1 g vanilla, 1.5 % guar gum and 0.5 % xanthan gum. Moisture, specific volume, porosity, firmness, crust color and oil absorption were evaluated. To study the effect of processing parameters on crust color components of doughnut, the RGB color space images were converted to L*a*b space. For determination of doughnut porosity using image analysis, the color images were first gray scaled and then thresholded using isodata algorithm. The porosity was measured from the ratio of white to the total numbers of pixels. Results were reported as the average of three replications. In the second part of this research, Cardamomum essential oil at 0, 50, 100, 150 and 200 ppm were used to improve antioxidant and sensory properties and decrease microbial contamination of doughnut. . In order to assess significant differences among samples, a complete randomized design of triplicate analyses of samples was performed using the Mini-Tab17. Tukey’s new multiple range tests were used to study the statistical differences of the means with 95% confidence.
Result and Discussion: The results of the first part showed that the sample contained 15% triticale flour and 0.50% gum with the highest specific volume (3.4 cm3g-1) and porosity (0.81) and the lowest firmness after one week of storage (11.91 N) and was introduced as the best example of the first part. Also, the results of oil absorption showed a decrease of 29.83% in the selected sample (0.17 g/g dry matter) compared to the control sample (0.24 g/g dry matter). The moisture content of the mentioned sample was 21.09% one week after production and L*, a* and b* of crust color was 55.27, 8.86 and 11.91, respectively. Brightness and redness of this sample was more than the control. The results of second part showed that cardamom essential oil had antioxidant activity in all concentrations. Also, the results indicated the concentrations of more than 50 ppm of cardamom essential oil can be considered as an antifungal agent and inhibit positive growth in doughnut. The microbial load of samples containing 100, 150 and 200 ppm had 3.97, 3.81 and 2.94 log cfu g-1 after 15 days of production, respectively. The microbial load of these samples was 51.05, 53.03 and 63.75% less than the sample without essential oil (10.11 log cfu g-1). Finally, the results of sensory evaluation showed that the sample containing 15% triticale flour, 0.50% basil seed gum and 100 ppm cardamom essential oil had the highest overall acceptance score and this sample is introduced as the best sample of this study.
Food Technology
Mohammad Ali Hesarinejad; Atefeh Arefkhani; Ali Rafe; Fatemeh Javidi; Alireza Sadeghian
Abstract
Introduction: Improving the texture and sensory properties of Iranian white cheese by reducing fat content is one of the most important issues that are considered both technologically and economically. Meanwhile, controlling the amount of water absorption in cheese usually causes textural problems in ...
Read More
Introduction: Improving the texture and sensory properties of Iranian white cheese by reducing fat content is one of the most important issues that are considered both technologically and economically. Meanwhile, controlling the amount of water absorption in cheese usually causes textural problems in cheese, including the softness of the cheese texture. Therefore, this problem will be solved if the amount of water absorption in the cheese can be controlled in such a way that the resulting cheese texture does not change and even its quality improves. Currently, the demand for the use of compounds or methods to achieve this goal is increasing. Hydrocolloids are compounds that, due to their inherent nature in absorbing water and creating a mouth-feel like fat, can have a special effect on fat replacement. Therefore, creating a suitable formula in the composition of hydrocolloids can complement the qualitative improvement of cheese texture. Basil seed gum (BSG) is a native hydrocolloid that has shown good stability and emulsifier properties, making it a potential functional ingredient in the food industry. Xanthan gum (XG) is also used in food as a thickener and stabilizer, and also can acts as a gelling agent along with other gums. In this study, by creating a suitable formulation in the use of these hydrocolloids, an attempt is made to improve the texture and sensory properties of cheese. Materials and methods: The effect of different concentrations of mixed-hydrocolloids based on XG/BSG, and Guar gum (GG)/BSG on the textural attributes of Iranian white cheese was investigated. Four cheese treatments (without hydrocolloids or with 0.25, 0.5, or 0.75 g/kg of milk) were produced to study the effects of hydrocolloid content on the textural properties of the product. Cheese samples were analyzed with respect to physicochemical, color, sensory characteristics, textural properties, and microstructure. Results and discussion: The results showed that the higher concentration of hydrocolloids from 0 to 0.075% used, the higher the increasein the moisture content of cheese samples. The results also showed that samples containing GG had higher moisture content than samples containing XG, which is probably due to the higher water absorption capacity of GG than XG. Increasing the concentration of hydrocolloids reduces the fat in the sample, which is due to the absorption and retention of more water in the cheese due to the hydrophilic properties of hydrocolloids. Samples containing GG had a lower fat content than samples containing XG. As the concentration of hydrocolloids increased, lightness increased, indicating the effect of hydrocolloids on the increase in whey cavities. The results also showed more lightness of XG samples than GG samples. Samples containing XG were more rigid, possibly confirming that this hydrocolloid has a greater effect than a mixture containing GG in the strength of the cheese and the effect of the GG is merely thickenning. With the increase in the concentration of BSG/XG (from 0.025 to 0.075%), the hardness increased from 260.96 to 364.23 g. The springiness of all samples also ranged from 0.99 to 1 mm, indicating good reversible behavior. It was found that the formula containing BSG/XG at a concentration of 0.50% had the highest overall acceptance after the sample containing BSG/XG at a concentration of 0.075%. Samples containing gum had low sensory evaluation results, possibly due to high moisture content, and were reported to be undesirable. In terms of taste, the samples did not differ significantly from each other. According to the results of textural analysis and sensory evaluation, the formula containing BSG/XG at 0.075% concentration, due to having the highest score of sensory evaluation and desirable textural characteristics, was selected as the optimal sample. In the microstructure of the desired cheese sample, the location of the whey serum has been determined. By adding hydrocolloid to the cheese, the protein matrix opens. When the sample was prepared for SEM analysis, the moisture was removed. Therefore, the effect of hydrated hydrocolloid was observed in the form of cavities. This structure has enough space to trap water and form a suitable gel.
Food Technology
Sima Naji-Tabasi; Elham Mahdian; Akram Arianfar; Sara Naji-Tabasi
Abstract
Introduction: Fats have a special place in human nutrition and their main role is supplying energy for the body. But scientific findings approve an association between high fat intake and an increment risk of some diseases, such as atherosclerosis, heart disease, and …. Demand for low-fat foods ...
Read More
Introduction: Fats have a special place in human nutrition and their main role is supplying energy for the body. But scientific findings approve an association between high fat intake and an increment risk of some diseases, such as atherosclerosis, heart disease, and …. Demand for low-fat foods has increased dramatically as people become more aware of fat consumption side effects. However, due to the multiple role of fats in food products, eliminating or decreasing fat lead to poor quality of products. Therefore, it is necessary to use a combination of fat substitutes to maintain the rheological, texture and sensory properties of the low fat food products. The use of emulsion gel structures are new methods for the production of low-fat product that has been studied in this investigation. The Pickering emulsion was used to produce the emulsion. In this method, instead of using surface-active agents, solid particles are used to stabilize the emulsion. The aim of this study was to prepare Pickering Emulsion from Isolated Soybean protein (ISP) and Basil Seed Gum (ISP-BSG) Complex. Finally, emulsion gel systems were applied as fat substitutes in cream. Materials and Methods: Basil seeds were purchased from Mashhad market. Isolated soy protein was purchased from Shandong Yuxin Bio-Tech Co. (China). Sodium azide was purchased from Applichem Inc. (Dramstadt, Germany). Sodium dodecyl sulphate (SDS) was obtained from Merck, Germany. Pickering (solid particles) of soy protein isolate (SPI) and SPI-basil seed gum (ISP-BSG) complex used as emulsifier for stabilization of cold emulsion. ISP-BSG particles were prepared with different mass ratios of ISP: BSG, 1: 0, 1: 1, 2: 1 and 3: 1 and named 1S: 0B, 1S: 1B, 2S: 1B and 3S: 1B, respectively. These solid particles were used as Pickering for emulsion preparation. Cold Emulsion was prepared by adding calcium chloride. The oil leakage, oil leakage after thermal treatments, microscopic structure, textural properties and viscoelastic properties of emulsion gel were studied. Then, the best structures used as a fat substitute in cream (5, 10 and 15%). Results & Discussion: Investigation of emulsion gel properties showed that coating the surface of emulsion droplets with solid nanoparticles formed a rigid shell that acted as a barrier against the deformation and transfer of materials from the interfacial surface. The use of ISP-BSG nanoparticles as picking particles caused more homogeneity and stiffness in emulsion gel structure. The rate of water loss in reduced fat cream was in the range of 1-2% by using the emulsion-gel system, which indicates the effectiveness of these systems in reducing dehydration in cream. The increasing replacement percentages led to increase water loss (p <0.05). However, emulsion type had no significant effect on water loss content (p> 0.05). According to the results, ISP-BSG nanoparticles impart high potential to stabilize emulsion with small oil droplets. Based on the results of the sensory test, it was found that the characteristics of the cream samples depended more on the replacement rate than the type of system used as an alternative. The presence of a fat replacement system maintained the desired quality in low-fat cream samples. Most of the samples scored higher than 3, which indicate the high acceptance of low-fat samples.
Masoud Hafiz; Zahra Sheikholeslami
Abstract
Introductıon: In baked foods, hydrocolloids have been used for retarding staling and improving the quality of fresh products ((Ba´rcenas et al 2003, 2004). Researchers found that all hydrocolloids are able to hold moisture loss during crumbing of bread and reduce the rate of water loss and moisture ...
Read More
Introductıon: In baked foods, hydrocolloids have been used for retarding staling and improving the quality of fresh products ((Ba´rcenas et al 2003, 2004). Researchers found that all hydrocolloids are able to hold moisture loss during crumbing of bread and reduce the rate of water loss and moisture to increase the bread crumb (Arendt, 2013). Ocimum basilicum L., and Amygdalus scoparia., commonly known as Basil and Farsi gums, are a good source for pharmaceutical, food and industrial applications. The aim of this study was to evaluate the effect of Ocimum Bacilicum and Farsi gums on optimization of loaf bread production by decreasing the hardness and increasing the special volume, porosity and extensibility values by using the response surface method. Materials and methods: The Ocimum bacilicum seeds were first cleaned, then seeds were soaked in distilled water to obtain a water to seed ratio of 37:1 at 40 ˚C and pH = 7. Separation of the hydrocolloid from the swollen seeds was achieved by passing the seeds through an extractor equipped with a rotating plate that scraped the gum layer on the seed surface. The extracted solution was then filtered and dried in an air forced oven at 60˚C and finally the powder was milled, sieved using a mesh 18 sifter, packed and kept at cool and dry condition (Karazhiyan et al., 2010, Mohamad Amini et al., 2007). Farsi gum in powder were bought from Rihan gum Parsian co. The effect of Basil and Farsi seed gum concentration (0-1%) on water activity, moisture, specific volume, hardness and extensibility of bread was investigated. For Data Analysis used SPSS software and Duncan test, for mean comparisons. Results and discusions: The results revealed that the water activity in bread was decreased while an enhancement was observed in moisture, hardness and extensibility with an increase at gum concentration. Further, the specific volume and porosity of bread were increased and then decreased by adding the gum with higher level. In order to reach to a minimum hardness and maximum specific volume, porosity and extensibility, the concentration of Basil and Farsi seed gum should be 0.46 and 0.35% respectively. The results of this study showed that any increase in concentration of gum in the formulation, makes moisture content, hardness and elongation to be increased, but the activity of water decreased. However, with the increase of Farsi gum, the amount of specific volume and porosity increased and then decreased. In the end, it can be stated that, in order to obtain optimal conditions for bread formulation, the percentage of basil and Farsi gum seeds should be 0.42 and 0.35% respectively.