Document Type : Full Research Paper


1 Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

2 Department of plant pathology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.


Introduction: AFB1 is a highly carcinogenic secondary metabolite of some species of Aspergillus. Recently, use of microorganisms has been increased to reduce the absorption of mycotoxins in gastrointestinal tract. So, in this study the effect of the three yeasts Saccharomyces cerevisiae, Pichia fermentans, and Rhodotorula mucilaginosa on reduction of AFB1 in a simulated model of human stomach was investigated.
Materials and methods: At first, A. flavus was isolated and then were purified. Then, AFB1 was produced in PDB media and presence of AFB1 was determined by blue fluorescence radiation under UV light. Toxin was extracted using the method of solvation in chloroform and injected into HPLC and the final concentration was 49 ng/ml. The simulated stomach was contaminated with 0.1 ml samples of AFB1 of three concentrations: 0.25 ng/ml and 0.50 ng/ml from standard AFB1 and also 49 ng/ml from the A. flavus under study. Then the yeasts were added and the mixture was incubated. After sampling at 0 and 120 minutes, the samples were centrifuged. The supernatants were separated to determine the concentration of residual toxin by direct competitive ELISA method. The experiment was conducted in a completely randomized design with a factorial experiment. The three factors included yeast (four levels: three yeasts and non-yeast treatments), concentration (four levels: 0, 0.25, 0.50 and 0.49 ng/ml) and time (two levels: 0 and 120 min). The whole experiment was carried out 3 times.
Results & ddiscussion: The results showed that all three yeasts had the ability to reduce the toxin in the stomach compared to the control treatment (without yeast), but the effect of R.mucilaginosa was more significant than the other two. The lowest toxin concentration in supernatant was observed at 0.25 ng/ml. Over time, toxin concentration in supernatant decreased. The interaction of yeasts and toxin concentration showed that in comparison with the control, at each three concentrations, all three yeasts could reduce toxin concentration. The minimum toxin concentration in supernatant was obtained at 0.25 ng/ml in the presence of R.mucilaginosa. The results of interaction of yeast×time showed that after both 0 and 120 minutes, all three yeasts were able to reduce the toxin and the minimum toxin concentration was observed after 120 minutes for R.mucilaginosa. The results of interaction of time and toxin concentration in the model showed that at 0.25 ng/ml toxin concentration was at the lowest level after 120 minutes. The results of interaction of yeast×time×toxin concentration showed that the lowest toxin concentration was related to R.mucilaginosa after 120 minutes at 0.25 ng/ml. To conclude, the results of this study showed that all three yeasts had the ability to reduce AFB1 in the simulated model of human stomach, but R.mucilaginosa can be introduced as the most efficient isolate in biocontrol of AFB1.


اصغرنژاد ف. مهدیان ص. امیری بشلی ب. سید جعفر نظری س. 1393. توانایی تولید آفلاتوکسین‌های B1، B2، G1 و G2 در تعدادی از گونه‌های قارچ آسپرژیلوس به روش کروماتوگرافی مایع با کارایی بالا (HPLC). فصلنامه تحقیقات بیماری‌های گیاهی، 2، 4: 70-55.
بامیار ا. محمدزاده میلانی ج. سید جعفری نظری س. 1394. تاثیر انواع مخمر بر میزان آفلاتوکسین B1 طی فرآیند تهیه نان. نشریه پژوهش‌های صنایع غذایی، 3: 339-.346
رهایی س. امام جمعه ز. رضوی ه. مظاهری م. 1388. توانایی سویه لاکتوباسیلوس رامنوسوس GG جهت کاهش آفلاتوکسین B1 موجود در پسته. مجله الکترونیک فرآوری و نگهداری مواد غذایی، 1(3): 51-64.
رهایی س. رضوی ه. امام جمعه ز. 1389. بررسی توانایی گونه مخمر ساکارومایسس سرویزیه جهت کاهش آفلاتوکسین موجود در پسته. فصلنامه علوم و صنایع غذایی، 7(1): 81-87.
صاحب قلم ه. محمدی ثانی ع. مهربان م. 1392. حذف بیولوژیکی آفلاتوکسین B1 توسط مخمر ساکارومایسس سرویزیه در خوراک دام. مجله‌ی نوآوری در علوم و فناوری غذایی، 3: 99-104.
کته شمشیری م. محمدی ثانی ع. سرابی جماب م. رهنما وثوق پ. مهربان سنگ آتش م. 1393. بررسی اثر لاکتوباسیلوس اسیدوفیلوس بر کاهش آفلاتوکسین M1 در مدل شبیه سازی شده معده انسان. پژوهش‌های علوم و صنایع غذایی ایران، 3: 210-204.
Abbas KH. Cartwright DR. Xie W. Shier WT. 2006. Aflatoxins and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Protection, 25: 1-9.
Cooney DO. 1980. Activated Charcoal: Antidotal and other medical uses, New York: Marecel dekker. ISBN 0824769139.
Elsanhoty RM. Salam SA. Ramadan MF. Badr FH. 2014. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control. 43. 129-134
El-Khoury A. Atoui A. Yaghi J. 2011. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control, 22: 1695-1699.
El-Nezami H. Kankaanpaa P. Salminen S. Ahokas J. 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen aflatoxin B1. Food and Chemical Toxicology, 36: 321-326.
El-Nezami H. Mykanen H. Kankaanpaa P. Salminen S. Ahokas J. 2000. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. Journal of Food Protection, 63: 549– 552.
Fardos B. Magda M. 2009. Trials towards reduction of fungal growth and aflatoxin G1 production in Arabic coffee using different additivies. AfricanJournal of Food Science, 3: 68-76.
Giovati L. Magliani W. Ciociola T. Santinoli C. Conti S. Polonelli L. 2015. AFM1 in milk physical biological and prophylactic methods to mitigate contamination. Toxins, 7: 4330-4349.
Hibbett DS. Binder M. Bischoff JF. Blackwell M. Cannon PF. Eriksson OE. Huhndorf S. James T. Kirk PM. 2007. A higher-level phylogenetic classification of the fungi. Mycological Research, 111: 509-547.
Kabak B. Brandon EFA. Var I. Blokland M. Sips AJAM. 2009. Effects of probiotic bacteria on the bioaccessibility of aflatoxin B1 and ochratoxin A using an in vitro digestion model under fed conditions. Journal of Environmental Science and Health, Part B, 44: 472-480.
Mahesh, B. K. and Devegowda, G. 1996, Ability of aflatoxin binders to bind aflatoxin contaminated poultry feeds and liquid media in vitro, In poster presented at the 12th Annual Symposium on Biotechnology in the feed industry, Lexington, Virginia.
Masoero F. Gallo A. Diaz D. Piva G. Moschini M. 2009. Effects of the procedure of inclusion of a sequestering agent in the total mixed ration on proportional aflatoxin M1 excretion into milk of lactating dairy cows. Animal Feed Science and Technology, 150: 34-45.
Magnoli AP. Rodriguez MC. Gonzalez Pereyra ML. Poloni VL. Peralta MF. Nilson AJ. Miazzo RD. Bagnis G. Chiacchiera SM. Cavaglieri LR. 2017. Use of yeast (Pichia kudriavzevii) as a novel feed additive to ameliorate the effects of aflatoxin B1 on broiler chicken performance. Mycotoxin Research, 33(4): 273-283.
MoreiradaSilva JF. Peluzio JM. Prado G. CruzMadeira JEG. OliveiraSilva M. De Morais PB. Rosa CA. Pimenta RS. Nicoli JR. 2015. Use of probiotics to control aflatoxin production in peanut grains. The Scientific World Journal, 959(138): 1-8.
Pierides M. El-Nezami H. Peltonen K. Salminen S. Ahokas J. 2000. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. Journal Food Protection, 63: 645–650.
Rahaie s. Emam-Djomeh z. Razavi SH. Mazaheri M. 2010. Immobilized Saccharomyces Cerevisiae as a potential aflatoxin decontaminating agent in pistachio nuts. Brazilian Journal of Microbiology. 41. 82-90
Sieuwerts S. De Bok FAM. Mols E. de Vos WM. Van Hylckama Vlieg JET. A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 47: 275-278.
Selma MV. Martinez-culebras A. Aznar PV. 2008. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Journal of Food Microbiology, 122: 126-134.
Shetty PH. Hald B. Jespersen L. 2007. Surface binding of aflatoxin B1 by Saccharomyces cervisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology, 113(1): 41-46
Shetty PH. Jespersen L. 2006. Saccharomyces cervisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology, 17: 48-55.
Thathana MG. Murage H. KingAbia AL. Pillay M. 2017. Morphological characterization and determination of aflatoxin-production potentials of aspergillus flavus isolated from maize and soil in Kenya. Agriculture, 7(80): 1-14.
Wang H. Lei Y. Yan L. Wan L. Ren X. Chen S. Dai X. Guo W. Jiang H. Liao B. 2016. Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins, 8(46): 1-16.
Zhou G. Chen Y. Kong Q. Yunxiao M. Liu Y. 2017. Detoxification of Aflatoxin B1 by Zygosaccharomyces rouxii with Solid State Fermentation in Peanut Meal. Toxins. 9. 42. 1-9.
Zhuang Z. Lohmar JM. Satterlee T. Cary JW. Calvo AM. 2016. The master transcription factor mtfA governs aflatoxin production morphological development and pathogenicity in the fungus Aspergillus flavus. Toxins, 8(29): 1-16.