Document Type : Research Article-en
Authors
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
Abstract
Global concern about human health and the increase the prevalence of chronic diseases in recent years lead to growing appeals for nutritious and healthy compounds, such as coenzyme Q10. Susceptibility to heat and lipophilic properties of coenzyme Q10 limit its utilization in food. Encapsulation is a technology that protects bioactive ingredients from harsh environmental conditions and extends shelf life. The purpose of this study was to encapsulate coenzyme Q10 using complex coacervation by gelatin–basil seed mucilage and characterize physical, thermal and chemical properties of produced microcapsules. Response surface methodology was applied to determine the optimum level of the four formulation variables for maximum encapsulation efficiency, loading capacity and turbidity and minimum supernatant absorption. The optimum microcapsules had encapsulation efficiency of 83.69%, encapsulation load of 16.32%, turbidity of 0.979 and supernatant absorption of 0.227. The microcapsules were assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The results of FTIR confirmed the formation of coacervates. The thermogram of Q10 loaded microcapsule melting point was not observed at its melting point (50°C) due to its solubility in the oil phase and appropriate entrapment. Release behavior of Q10 was studied by different mathematical models. Microencapsulated Q10 was used to fortify milk and the results showed that the developed protein-carbohydrate microcapsules can be applied for protection of hydrophobic compounds.
Keywords
Main Subjects
- Ahmadi, N., Nasirpour, A., Sheikhzeinodin, M., & Keramat, J. (2015). Microencapsulation of ubiquinone using complex coacervation for functional yoghurt. Food Science and BiotechnologyBiochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 24(3), 895-904. http://dx.doi.org/10.1007/s10068-015-0116-x
- Akhter, M.H., Ahmad, A., Ali, J., & Mohan, G. (2014). Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. Journal of Pharmaceutical Innovation, 9(2), 121-131. http://dx.doi.org/10.1007/s12247-014-9179-0
- Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608-616. https://doi.org/10.1016/j.carbpol.2013.09.006
- Byeon, J.H., Kang, Y.-R., & Chang, Y.H. (2023). Physicochemical and in vitro digestion properties of gelatin/low-methoxyl pectin synbiotic microgels co-encapsulating Lacticaseibacillus casei and pectic oligosaccharides via double-crosslinking with transglutaminase and calcium ions. Food Hydrocolloids, 142, 108757. https://doi.org/10.1016/j.foodhyd.2023.108757
- Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H.B., Pedraza-Chaverri, J., & Ponce-Alquicira, E. (2017). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocolloids, 62, 49-57. https://doi.org/10.1016/j.foodhyd.2016.07.028
- Chang, P.G., Gupta, R., Timilsena, Y.P., & Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 191, 58-66. https://doi.org/10.1016/j.jfoodeng.2016.07.008
- Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), 455-460. https://doi.org/10.1016/j.jfoodeng.2011.01.011
- Duhoranimana, E., Karangwa, E., Lai, L., Xu, X., Yu, J., Xia, S., Zhang, X., Muhoza, B., & Habinshuti, I. (2017). Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism. Food Hydrocolloids, 69, 111-120. https://doi.org/10.1016/j.foodhyd.2017.01.035
- Escriva, A., Esteve, M., Farré, R., & Frıgola, A. (2002). Determination of liposoluble vitamins in cooked meals, milk and milk products by liquid chromatography. Journal of Chromatography A, 947(2), 313-318. https://doi.org/10.1016/S0021-9673(01)01618-1
- Fonte, P., Soares, S., Costa, A., Andrade, J. C., Seabra, V., Reis, S., & Sarmento, B. (2012). Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter, 2(4), 329-339. https://doi.org/10.4161/biom.23246
- Gokce, E.H., Korkmaz, E., Tuncay-Tanrıverdi, S., Dellera, E., Sandri, G., Bonferoni, M.C., & Ozer, O. (2012). A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. International Journal of Nanomedicine, 7, 5109. https://doi.org/10.2147/ijn.s34921
- Hamed, S., & Allam, M.A. (2006). Application of FTIR spectroscopy in the determination of antioxidant efficiency in sunflower oil. Journal of Applied Sciences Research, 2(1), 27-33.
- Hogan, S.A., McNamee, B.F., O'Riordan, E.D., & O'Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49(4), 1934-1938. https://doi.org/10.1021/jf000276q
- Hosseini-Parvar, S., Matia-Merino, L., Goh, K., Razavi, S.M.A., & Mortazavi, S.A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum seed: effect of concentration and temperature. Journal of Food Engineering, 101(3), 236-243. https://doi.org/10.1016/j.jfoodeng.2010.06.025
- Hu, R., Dong, D., Hu, J., & Liu, H. (2023). Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocolloids, 138, 108457. https://doi.org/10.1016/j.foodhyd.2023.108457
- Ifeduba, E.A., & Akoh, C.C. (2016). Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates. Food Chemistry, 199, 524-532. https://doi.org/10.1016/j.foodchem.2015.12.011
- Jain, A., Thakur, D., Ghoshal, G., Katare, O., & Shivhare, U. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8(8), 1635-1644. http://dx.doi.org/10.1007/s11947-015-1521-0
- Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125(4), 1267-1272. https://doi.org/10.1016/j.foodchem.2010.10.063
- Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42(2), 232-236. https://doi.org/10.1016/j.jpba.2006.03.037
- Kavousi, H. R., Fathi, M., & Goli, S. A. (2017). Stability enhancement of fish oil by its encapsulation using a novel hydrogel of cress seed mucilage/chitosan. International Journal of Food Properties, 20(sup2), 1890-1900. https://doi.org/10.1080/10942912.2017.1357042
- Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum) gum. Carbohydrate Polymers, 102, 199-206. https://doi.org/10.1016/j.carbpol.2013.10.062
- Li, M., Guo, Y., Wei, Y., MacDiarmid, A.G., & Lelkes, P.I. (2006). Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 27(13), 2705-2715. https://doi.org/10.1016/j.biomaterials.2005.11.037
- Li, X., Zhang, M., Zhou, L., Liu, J., & Marchioni, E. (2023). Construction of whey protein gels prepared by three methods to stabilize high internal phase Pickering emulsions loaded with CoQ10 under different pH. Food Chemistry, 421, 136192. https://doi.org/10.1016/j.foodchem.2023.136192
- Naji-Tabasi, S., Razavi, S.M.A., Mohebbi, M., & Malaekeh-Nikouei, B. (2016). New studies on basil (Ocimum bacilicum L.) seed gum: Part I–Fractionation, physicochemical and surface activity characterization. Food Hydrocolloids, 52, 350-358. https://doi.org/10.1016/j.foodhyd.2015.07.011
- Nakagawa, K., & Nagao, H. (2012). Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411, 129-139. https://doi.org/10.1016/j.colsurfa.2012.07.010
- Peng, C., Zhao, S.-Q., Zhang, J., Huang, G.-Y., Chen, L.-Y., & Zhao, F.-Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560-568. https://doi.org/10.1016/j.foodchem.2014.05.126
- Prata, A.S., & Grosso, C.R. (2015). Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists' Society, 92(7), 1063-1072. http://dx.doi.org/10.1007/s11746-015-2670-z
- Rahman, M. S., Al-Saidi, G., Guizani, N., & Abdullah, A. (2010). Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochimica Acta, 509(1-2), 111-119. https://doi.org/10.1016/j.tca.2010.06.011.
- Razavi, S.M., Bostan, A., & Rezaie, M. (2010). Image processing and physico‐mechanical properties of basil seed (Ocimum basilicum). Journal of Food Process Engineering, 33(1), 51-64. https://doi.org/10.1111/j.1745-4530.2008.00259.x
- Rocha-Selmi, G.A., Theodoro, A.C., Thomazini, M., Bolini, H.M., & Favaro-Trindade, C.S. (2013). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. Journal of Food Engineering, 119(1), 28-32. https://doi.org/10.1016/j.jfoodeng.2013.05.002.
- Saeidy, S., Keramat, J., & Nasirpour, A. (2014). Microencapsulation of calcium using water-in-oil-in-water double emulsion method. Journal of Dispersion Science and Technology, 35(3), 370-379. https://doi.org/10.1080/01932691.2013.788453
- Sharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., & Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496.
- Silva, D., Favaro‐Trindade, C., Rocha, G., & Thomazini, M. (2012). Microencapsulation of lycopene by gelatin–pectin complex coacervation. Journal of Food Processing and Preservation, 36(2), 185-190. https://doi.org/10.1111/j.1745-4549.2011.00575.x.
- Swarnakar, N.K., Jain, A.K., Singh, R.P., Godugu, C., Das, M., & Jain, S. (2011). Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials, 32(28), 6860-6874. https://doi.org/10.1016/j.biomaterials.2011.05.079.
- Wang, B., Adhikari, B., & Barrow, C.J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365. https://doi.org/10.1016/j.foodchem.2014.02.135
- Wang, C., Zhao, R., He, K., Zhang, S., Kemp, A.H., & Guo, M. (2023). Pharmacokinetic profile and sub-chronic toxicity of coenzyme Q10 loaded whey protein nanoparticles. Food Bioscience, 52, 102347. https://doi.org/10.1016/j.fbio.2022.102347
- Xiao, Z., Li, W., & Zhu, G. (2015). Effect of wall materials and core oil on the formation and properties of styralyl acetate microcapsules prepared by complex coacervation. Colloid and Polymer Science, 293(5), 1339-1348.
- Yang, X., Gao, N., Hu, L., Li, J., & Sun, Y. (2015). Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, 161, 87-93. https://doi.org/10.1016/j.jfoodeng.2015.03.027
- Yari, S., Nasirpour, A., & Fathi, M. (2016). Effect of polymer concentration and acidification time on olive oil microcapsules obtained by complex coacervation. Applied Food Biotechnology, 3(1), 53-58. http://dx.doi.org/10.22037/afb.v3i1.10226
- Zamarreño, M.D., Pérez, A.S., Pérez, C.G., & Méndez, J.H. (1992). High-performance liquid chromatography with electrochemical detection for the simultaneous determination of vitamin A, D3 and E in milk. Journal of Chromatography A, 623(1), 69-74. https://doi.org/10.1016/0021-9673(92)85300-I
Send comment about this article