Research Article-en
Food Engineering
Sajad Jafarzadeh; Mohsen Azadbakht; Faryal Varasteh; Mohammad Vahedi Torshizi
Abstract
Since persimmon is a pressure-sensitive fruit and it is difficult to store this fruit in warehouses, in this research, an attempt has been made to examine the parameters affecting the reduction of changes in its physical properties. The samples were loaded at 150 and 250 N, three types of foam container ...
Read More
Since persimmon is a pressure-sensitive fruit and it is difficult to store this fruit in warehouses, in this research, an attempt has been made to examine the parameters affecting the reduction of changes in its physical properties. The samples were loaded at 150 and 250 N, three types of foam container packaging with polyolefin film, polyethylene-terephthalate, and ordinary box, and four types of polyamine putrescine coating with concentrations of 1 and 2 mM, distilled water and uncoated. Properties such as Physiological Weight Loss, volume, and the density of persimmon fruit, as well as the firmness of this fruit in the prepost-storage stage were examined. The results showed, the highest firmness was obtained in the treatment of putrescine at a concentration of 1 mM and a foam container with polyethylene film with a value of 6.5 N, which was almost three times the firmness of uncoated fruits. The lowest Physiological Weight Loss, volume, and density were obtained in the same type of coating and packaging. The values of these parameters were 2.458%, 1.82, and 0.833%, respectively, compared to the first day of storage. Overall, the use of polyamine treatment showed a significant effect on changes in the physical properties of persimmon fruit, and foam containers with polyolefin film emerged as the optimal packaging option, resulting in the least amount of change among the different types of packaging used.
Research Article-en
Food Engineering
Setereh Ramezani; Mohammad Shahedi; Milad Fathi
Abstract
Global concern about human health and the increase the prevalence of chronic diseases in recent years lead to growing appeals for nutritious and healthy compounds, such as coenzyme Q10. Susceptibility to heat and lipophilic properties of coenzyme Q10 limit its utilization in food. Encapsulation is a ...
Read More
Global concern about human health and the increase the prevalence of chronic diseases in recent years lead to growing appeals for nutritious and healthy compounds, such as coenzyme Q10. Susceptibility to heat and lipophilic properties of coenzyme Q10 limit its utilization in food. Encapsulation is a technology that protects bioactive ingredients from harsh environmental conditions and extends shelf life. The purpose of this study was to encapsulate coenzyme Q10 using complex coacervation by gelatin–basil seed mucilage and characterize physical, thermal and chemical properties of produced microcapsules. Response surface methodology was applied to determine the optimum level of the four formulation variables for maximum encapsulation efficiency, loading capacity and turbidity and minimum supernatant absorption. The optimum microcapsules had encapsulation efficiency of 83.69%, encapsulation load of 16.32%, turbidity of 0.979 and supernatant absorption of 0.227. The microcapsules were assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The results of FTIR confirmed the formation of coacervates. The thermogram of Q10 loaded microcapsule melting point was not observed at its melting point (50°C) due to its solubility in the oil phase and appropriate entrapment. Release behavior of Q10 was studied by different mathematical models. Microencapsulated Q10 was used to fortify milk and the results showed that the developed protein-carbohydrate microcapsules can be applied for protection of hydrophobic compounds.
Research Article-en
Food Biotechnology
Mina Seifzadeh
Abstract
Collagen has diverse general and biomedical applications and its important role in the future of society have made it a key biopolymer for human health and well-being. Therefore, the present study was conducted with the objectives of extracting collagen from the skin of farmed carp, determining the quality ...
Read More
Collagen has diverse general and biomedical applications and its important role in the future of society have made it a key biopolymer for human health and well-being. Therefore, the present study was conducted with the objectives of extracting collagen from the skin of farmed carp, determining the quality characteristics of collagen, and comparing them. Collagen was extracted from the skin of carp fishes by acidic enzymatic method using 0.5 M acetic acid and pepsin in 48 hours. Collagen treatments (5 treatments) included collagen prepared from the skin of common species, grass carp, bighead, silver, and cow (control). Collagen treatments were not capable of hemolysis and did not show toxic effects on human fibroblast cells. Heavy metals (0.01-0.18 ppm) in collagen extracted from cultured carp species were within the standard range. The color (brightness) of experimental collagen (92.74-93.68) and control (92.38) showed no significant difference (p<0.05). Amino acids cysteine and tryptophan were not observed in collagen. Glycine and hydroxylysine amino acids (352 and 3 residues 1000g-1, respectively) had the highest and lowest amounts in collagen. Amino acids profile and collagen production efficiency (10.51-10.59%) did not show significant differences in carp fish species (p<0.05). Based on the results of the present study, production efficiency, safety and quality characteristics of collagen in cultured carp species did not show any significant difference (p<0.05), and no significant difference was observed between these characteristics and the control (p<0.05). Therefore, the skin of these species can be used to produce collagen and introduce it to the industry as a substitute for mammalian collagen.
Research Article-en
Food Biotechnology
Shabnam Parichehreh; Gholamhossein Tahmasbi; Mohammad Eslampanah; Pejvak Khaki
Abstract
Iranian men are at risk of developing gastrointestinal cancer caused by H. pylori. It is very imperative to find effective methods to control this bacterium as there are currently no very effective treatments for it. Honey has been shown to have antimicrobial properties against various pathogens. ...
Read More
Iranian men are at risk of developing gastrointestinal cancer caused by H. pylori. It is very imperative to find effective methods to control this bacterium as there are currently no very effective treatments for it. Honey has been shown to have antimicrobial properties against various pathogens. This study analyzed 15 honey samples from A. florea bees, collected from different floral and geographical origins, for their antimicrobial efficacy against H. pylori. Using atomic absorption measurements, the honey samples were also tested for their phenolic and flavonoid content, protein concentration, and mineral content. Antioxidant activity was determined using the FRAP, DPPH, and ABTS methods. The antibacterial activity of honey samples was investigated both in-vitro and in-vivo in the gastrointestinal tract of mice. Statistical analysis revealed a significant positive correlation between antioxidant activity and antibacterial activity. All honey samples showed antimicrobial activity in-vitro, among which jujube honey from Bushehr exhibiting the highest activity. Differences in antioxidant and antimicrobial activities were likely due to the flora of the plants and the geographic region from which the honey was harvested. Based on these results, A. florea honey may be used in the prevention and treatment of H. pylori-associated infections and inflammation of the gastrointestinal tract. This feature can be applied to the control of Helicobacter pylori along with other available measures.
Research Article-en
Food Biotechnology
S.Javad Hosseini; Mostafa Shahidi Noghabi; Hossein Zamani; Gholamhossein Zohuri; Mahboubeh Sarabi
Abstract
The essential oils usually have a good effect against undesirable microorganisms; therefore, they can be utilized as natural antimicrobial agents in food or their packaging. In this research, the antimicrobial attributes of two essential oils (Oliveria decumbens and Pistacia atlantica gum), have been ...
Read More
The essential oils usually have a good effect against undesirable microorganisms; therefore, they can be utilized as natural antimicrobial agents in food or their packaging. In this research, the antimicrobial attributes of two essential oils (Oliveria decumbens and Pistacia atlantica gum), have been investigated before and after thermal process (200°C - 10 minutes) against bacterial and mold spoilage in bread. Also, the compounds of essential oils were detected by gas chromatography-mass spectrometry. The main compounds of the essential oil of O. decumbens were carvacrol, thymol, and elemicin before and after thermal treatment. In the case of P. atlantica gum, only one prominent peak was observed in the chromatogram, which was related to the α-pinene. For both essential oils, the MIC and MFC against Aspergillus niger were 4000 and 8000 μL/ml, respectively. In comparison, the antimicrobial effect of both essential oils against Bacillus subtilis was higher than the mold. The amount of MIC and MBC were 125 and 250 μL/ml for Oliveria decumbens and 62.5 and 125 μL/ml for Pistacia atlantica gum, respectively. The results showed that these two essential oils have a promising effect against the main microorganisms of bread spoilage. The thermal process did not significantly affect the antimicrobial activity of Pistacia atlantica gum essential oil against A. niger but significantly decreased the antimicrobial activity against B. subtilis, while in the case of antimicrobial activity of Oliveria decumbens essential oil, the results were the opposite. Considering the fact that the most spoilage agents of the bread are molds so the use of Pistacia atlantica gum essential oil is recommended as natural preservatives in products that tolerate high heat treatment, such as bread and bakery products.
Research Article-en
Food Chemistry
Mahbobe Mohammadi; Soheila Aghaei Dargiri; Somayeh Rastegar
Abstract
The use of edible coatings has been considered as an effective solution to improve the shelf life and quality of fruits. In this research, increase in the shelf life of citrus fruits (Citrus aurantifolia cv. Mexican lime) coated with Persian gum and pomegranate seed oil was investigated. Different treatments ...
Read More
The use of edible coatings has been considered as an effective solution to improve the shelf life and quality of fruits. In this research, increase in the shelf life of citrus fruits (Citrus aurantifolia cv. Mexican lime) coated with Persian gum and pomegranate seed oil was investigated. Different treatments of lemon fruit coated with Persian gum and pomegranate seed oil with concentrations (zero (control), 0.5% and 1% gum, combination of 0.5% and 1% gum and pomegranate seed oil, 0.05% and pomegranate seed oil 0.05 percent) were prepared and after 24 days of storage at ambient temperature (20 ± 2 °C and relative humidity of 50-60 percent) were statistically evaluated in the form of a completely random design with three replications. The results of this research showed that the treatments used had an effective role in controlling the weight loss of fruit during storage. Thus, the lowest percentage of weight loss was observed in the pomegranate seed oil treatment. Except pomegranate seed oil treatment, other treatments showed less TSS than the control. In most of the treatments, the content of phenol, flavonoid and antioxidant was at a higher level than the control. The average comparison results showed that the fruits coated with 1% gum (85.36 units/ml) showed significantly more peroxidase activity than the control (60.35 U/ml). Persian gum edible coating 1% and 0.5% as well as Persian gum 1% in combination with pomegranate seed oil significantly controlled the activity of polyphenol oxidase enzyme. The treated samples showed less yellowness (b*) than the control. In general, the best marketability was observed in fruits coated with 1% gum. Therefore, it is recommended to use this coating to preserve the freshness and quality of the Mexican lime fruit during storage in the environment.