با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز

2 دانشگاه علوم پزشکی تبریز

چکیده

یکی از کاربردهای نانو فناوری در زمینه علوم غذایی و دارویی، درون پوشانی (انکپسولاسیون) ترکیبات زیست فعال و تولید سیستم های نانوحامل به منظور غنی سازی و تولید مواد غذایی فراسودمند می باشد. نانوحامل ها با استفاده از بیوپلیمرها (پروتئین ها و پلی ساکارید ها) و یا ترکیبات بر پایه لیپید تولید می شوند. در این تحقیق، تولید و ویژگی های نانوکمپلکس های پکتین ـ کازئین به عنوان یک نانوحامل بالقوه توسط آزمون های طیف سنجی فرو سرخ (FTIR) و اندازه گیری اندازه و توزیع ذرات بررسی شد. نتایج FTIR، ایجاد برهمکنش های الکتروستاتیک بین پکتین و کازئین را نشان داد. تصاویر مربوط به میکروسکوپ الکترونی گذاره(TEM) و نتایج پتانسیل زتا و اندازه ذرات تشکیل دیسپرسیون پایدار با حداقل اندازه 86 نانومتر را در 1/4 = pH، کازئین 1% و پکتین 45/0 % نشان دادند. محلول های نانوکمپلکس در تمامی غلظت ها و در آهنگ برشی ثابت، در مقایسه با محلول های خالص پکتین و کازئینات سدیم دارای تنش برشی و ویسکوزیته بالاتری بودند و رفتار رئولوژیکی محلول های بیوپلیمری از حالت نیوتنی در محلولهای خالص به سمت رفتار غیرنیوتنی روان شونده با برش (سودوپلاستیک) در برخی نمونه های کمپلکس حاوی کازئین و پکتین تغییر کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Casein-pectin Nanocomplex: FTIR, Morphology, Physical Properties and Steady Flow Behavior

نویسندگان [English]

  • Sajedeh Bahrani 1
  • Babak Ghanbarzadeh 1
  • Hamed Hamishekar 2
  • Mahood Sowti Khiabani 1

1 University of Tabriz

2 Tabriz University of Medical Sciences

چکیده [English]

Encapsulation of bioactive ingredient and production of nano carriers in order to food enrichment and production of functional food is one of the applications of nano technology in food science and pharmaceutical. Nano carriers are produced using biopolymers (proteins and polysaccharids) or lipid based materials. In this research, production and characterization of pectin-casein nanocomplexes as a potential nanocarrier were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and measurement of particle size and distribution. FTIR results showed electrostatic interactions between pectin and casein. Transmission Electron Microscopy, zeta potential and particle size showed stable dispersion with 86 nm at pH = 1.4, casein %1 and pectin 0.45. Nanocomplex solutions compared to pure pectin and sodium caseinate solutions have higher shear stress and viscosity in constant shear rate and rheological behavior of biopolymer solutions were altered from Newtonian to non Newtonian in complexes includes casein and pectin.

کلیدواژه‌ها [English]

  • Casein- pectin nanocomplex
  • FTIR
  • Zeta potential
  • Particle size
  • TEM and steady rheology
عباسی، س. و رحیمی، س.، 1384، بررسی تأثیر غلظت، دما و پ هاش و سرعت چرخشی روی رفتار جریان محلول صمغ کتیرای ایرانی، مجله علوم و صنایع غذایی ایران، 2، 41-29.
قنبرزاده، ب.، 1388، مبانی رئولوژی مواد و بیوپلیمرهای غذایی، انتشارات دانشگاه تهران.
هاشمی نیا، م.، ابراهیم زاده موسوی، م. ع.، احسانی، م. ر. و دهقا نیا، ج.، 1390، تأثیر افزودن هیدروکلوئید ژلان روی ویژگیهای رئولوژیکی و پایدارسازی دوغ فیبردار، نشریه پژوهشهای صنایع غذایی، 21، 193-179.
Anal, A. K., Tobiassen, A., Flanagan, J. & Singh, H., 2008, Preparation and characterization of nanoparticles formed by chitosan–caseinate interactions, Colloids and Surfaces B: Biointerfaces, 64, 104–110.
Bedie, G. K., Turgeon, S. L. & Makhlouf, K., 2008, Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods, Food Hydrocolloids, 22, 836–844.
Chanasattru, W., Griffith Jones, O., Decker, E. A. & McClements, D. J., 2009, Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of Beta-lactoglobulin–Pectin complexes, Food Hydrocolloids, 23, 2450–2457.
Chen, L., Remondetto, G. E. & Subirade, M., 2006, Food protein-based materials as nutraceutical delivery systems, Trends in Food Science and Technology, 17, 272-283.
Des Rieux, A., Fievez, V., Garinot, M., Schneider, Y.J. & Preat, V., 2006, Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach, Jurnal of Controlled Release, 116, 1-27.
Filippove, M. P., 1992, Practical infrared spectroscopy of pectic substances, Food Hydrocolloids, 6, 115–142.
Girard, M., Turgeon, S. L. & Gauthier, S. F., 2003, Thermodynamic parameters of beta-lactoglobulin – pectin complexes assessed by isothermal titration calorimetry, Journal of Agricultural and Food Chemistry, 51, 4450–4455.
Gnanasambandan, R. & Proctor, A., 2000, Determination of pectin degree of esterification by diffuse reflectance Fourier Transform Infrared Spectroscopy, Food Chemistry, 68, 327–332.
Grenha, A., Gomes, M. E., Rodrigues, M., Santo, V. E., Mano, J. F., Neves, N. M. & Reis, R. L., 2009, Development of new chitosan/carageenan nanoparticles for drug delivery applications, Journal of Material Research A, 92, 1265-1272.
Gu, Y. S., Decker, E. A. & McClements, D. J., 2004, Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in- water emulsions, Journal of Agricultural and Food Chemistry, 52, 3626–3632.
Honary, S., Maleki, M. & Karimi, M., 2009, The effect of chitosan molecular weight on the properties of alginate/chitosan microparticles containing prednisolone, Tropical Journal of Pharmaciutical Research, 8, 53-61.
Jensen, S., Rolin, C. & Ipsen, R., 2010, Stabilisation of acidifie skimmed milk with HM pectin, Food Hydrocolloids, 24, 291-9.
Jones, W., Decker, E. A. & McClements, D. J., 2010, Thermal analysis of beta-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles, Food Hydrocolloids, 24, 239–248.
Kaya, S. & Tekin, A. R., 2001, The effect of salep content on the rheological characteristics of a typical ice-cream mix, Journal of Food Engineering, 47, 59-62.
Langer, R. & Peppas, N. A., 2003, Advances in biomaterials, drug delivery, and bionanotechnology, American Institute of Chemical Engineers, 49, 299 -306.
Li, P., Dai, Y. N., Zhang, J. P. & Wang, A. Q., 2008, Chitosan- Alginate nanoparticles as a novel drug delivery system for nifedipine, International Journal of Biomedical Science, 4, 221-228.
Lucey, J. A., Tamehana, M., Singh, H. & Munro, P. A., 1999, Stability of model acid milk beverage: Effect of pectin concentration, storage temperature and milk heat treatment, Journal of Texture Studies, 30,305-18.
Luo, Y., Zhang, B., You, L., Whent, M. & Wang, Q., 2011, Preparation and characterization of zein/chitosan complex for encapsulation of alfa-tocopherol, and its in vitro controlled release study, Colloids and Surfaces B: Biointerfaces,85,145-152.
Maroziene, A. & de Kruif, C. G., 2000, Interaction of pectin and casein micelles, Food Hydrocolloids, 14, 391-394.
Medina-Torres. L., 2000, Rheological properties of the mucilage gum (Opuntia ficus indica), Food Hydrocolloids, 14, 417-424.
Orona, V. U., Chu, A. R. & Mendoza, J. L., 2010, A novel pectin material: Extraction, Characterization and Gelling Properties, International Journal of Molecular Science, 11, 3686-3695.
Pedersen, H. C. A. & Jorgensen, B. B., 1991, Influence of pectin on the stability of casein solutions studied in dependence of varying pH and salt concentration, Food Hydrocolloids, 5, 323-328.
Ron, N., Zimet, P. & Livney, Y. D., 2010, Beta-lactoglobulin-polysaccharide complexes as nanovehichles for hydrophobic nutraceuticals in non-fat foods and clear beverages, International dairy journal, 20, 686-693.
Santipanichwong, R., Suphantharika, M., Weiss, J. & McClements, D. J., 2008, Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregate, Journal of Food Science, 73, 23 – 30.
Sato, M. D. F., Rigoni, D. C., Canteri, M. H. G., Petkowics, C. L. D. O., Nogueira, A. & Wosiacki, G., 2011, Chemical and instrumental characterization of pectin frome dried pomace of eleven apple cultivar, Acta Scientiarum Agronomy, 33, 383-389.
Schonhoff, M., 2003, Layered polyelectrolyte complexes: Physics of formation and molecular properties, Journal of Physics: Condensed Matter, 15, 781–808.
Sejersen, M. T., Salomonsen, T., Ipsen, R., Clark, R., Rolin, C. & Engelsen, S. B., 2007, Zeta potential of pectin-stabilized casein aggregates in acidified milk drinks, International Dairy Journal, 17, 302–307.
Surh, J., Decker, E. A. & McClements, D. J., 2006, Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions, Food Hydrocolloids, 20, 607–618.
Syrbe, A., Bauer, W. J. & Klostermeyer, H., 1998, Polymer science concepts in dairy system: An overview of milk protein and food hydrocolloid interaction, International Dairy Journal, 8, 179–193.
Thakur, B. R., Singh, R. K. & Handa, A. K., 1997, Chemistry and uses of pectin-a review, Critical Reviews in Food Science and Nutrition, 37, 47–73.
Tuinier, R., Rolin, C. & de Kruif, C. G., 2002, Electrosorption of pectin onto casein micelles, Biomacromolecules, 3, 632– 638.
Wanchoo, R. K., Sharma, S. K. & Bansal, R., 1996, Rheological parameters of some water-soluble polymers, Polymer Materials, 13, 49- 55.
Ye, A., Flanagan, J. & Singh, H., 2006, Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic, Biopolymers, 82, 121-133.
Ye, A., 2008, Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review, International Journal of Food Science and Technology, 43, 406–415.
Zimet, P. & Livney, Y. D., 2009, Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for u-3 polyunsaturated fatty acids, Food Hydrocolloids, 23, 1120–1126.
CAPTCHA Image