با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 گروه مهندسی بیوسیستم، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

در این پژوهش، به‌منظور برآورد خواص خشک‌کردن بادمجان در یک خشک‌کن پیوسته از روش شبکه‌های عصبی مصنوعی (ANN)، الگوریتم بهینه‌سازی توده ذرات (PSO) و الگوریتم گرگ خاکستری (GWO) استفاده شد. فرآیند خشک‌کردن در سه سطح دمایی (45، 60 و C°75)، سه سطح سرعت هوا (1 و 5/1 و m/s2) و سه سطح سرعت خطی تسمه (5/2، 5/6 و mm/s 5/10) در یک خشک‌کن پیوسته صورت گرفت که این سه پارامتر به‌عنوان ورودی در پیش‌بینی ضریب پخش رطوبت موثر و انرژی مصرفی ویژه، در مدل‌های ANN، PSO و GWO مورد استفاده قرار گرفت. آزمایش‌ها برای خشک کردن بادمجان از رطوبت (d.b.%) 1025 تا زمانی که رطوبت نهایی به (d.b.%) 10 رسید انجام گرفت. با توجه به نتایج به‌دست آمده، بیشترین مقدار ضریب پخش رطوبت موثر (Deff) برای بادمجان (m2/s 8-10×14/1) حاصل شد. همچنین کمترین مقدار انرژی مصرفی ویژه (SEC) MJ/kg62/130 به‌دست آمد. پس از آن 27 نمونه آماده با توجه به استانداردهای مربوطه و مجموعه داده‌ها به‌دست آمد. سپس با توجه به چندین شاخص عملکرد، از جمله ضریب تعیین (R2)، میانگین مربعات خطا (MSE) و میانگین خطای مطلق (MAE)، مدل‌ها مورد بررسی و مقایسه قرار گرفتند و بهترین مدل پیش‌بینی انتخاب شد. با توجه به نتایج به‌دست آمده مقدار R2 برای مدل GWO به‌ترتیب 9996/0 و 9994/0 برای ضریب پخش رطوبت موثر و انرژی مصرفی نشان‌دهنده برتر بودن مدل GWO نسبت به سایر مدل‌ها می‌باشد، در حالی که این مقادیر به‌ترتیب 9992/0 و 9991/0 برای PSO و 9990/0 و 9988/0 برای ANN به‌دست آمد. نتایج نشان داد که مدل GWO دارای ظرفیت بیشتری برای پیش‌بینی Deff و SEC در مقایسه با دیگر مدل‌ها می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Prediction of effective moisture diffusity and specific energy consumption of eggplant in continuous band drying using some novel methods

نویسندگان [English]

  • Mohammad Kaveh 1
  • Reza Amiri Chayjan 2
  • Yousef Abbaspour-Gilandeh 1
  • Tarahom Mesri Gundoshmian 1

1 Department of Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

چکیده [English]

Introduction: Eggplant (Solanum melongenaL.) is being cultivated in North America, Asia and the Mediterranean area. Its limited shelf life is one of the important restrictions in the trade of eggplant as a fresh product. Drying is one of the most current methods used to maintenance agricultural products. This process improves the food stability, since it reduces significantly the water and microbiological activity of the material and minimizes physical and chemical changes during its storage. Dynamic modeling of drying characteristics for various agricultural products, including artificial intelligence techniques that include artificial neural networks (ANNs), particle swarm optimization (PSO) and grey wolf optimizer (GWO) Which has attracted a lot of attention recently, because the ability to learn from these systems to detect fruit and vegetable behaviors is a complex process in which mathematical models simply do not apply in recent decades. The main objective of this research was to determine the effective moisture diffusivity, and specific energy consumption of eggplant slices with a semi-industrial continuous band dryer. Moreover, some novel methods including ANN, PSO and GWO as an approximating tools were developed and evaluated for prediction of Deff and SEC of the process.

Materials and methods: Freshly harvested eggplant were purchased from a local market and stored in the refrigerator at about 4°C for experiments. The initial moisture content of eggplant was determined by oven method. About 40 g of eggplant slice (4 mm thickness) with three replicates were dried at 70°C for 24 h. Eggplant slice with average initial moisture content of 10.25% (d.b.) was chosen as the drying material.
The dryer consists of an adjustable centrifugal blower, hot air suction tube, heater, control panel, air channel to uniform distribution of hot air, drying chamber, Belt (20 cm, 200 cm), three inverters (LS, Korea), temperature and humidity sensors, electrical motor, removable upper part, base, shafts, three infrared lamps (Philips, Belgium) and belt guide. The experiments were performed at air temperatures of 45, 60, and 75C, air velocities of 1, 1.5, and 2 m/s, and belt linear speeds of 2.5, 6.5, and 10.5 mm/s. Feed and cascade forward neural networks were used in this study. There are two types of multilayer perceptron neural network. Two training algorithms including LevenbergMarquardt (LM) and Bayesian regulation (BR) back propagation algorithms were used for updating network weights. The PSO is a simple, powerful and metaheuristic technique that can be applied to solve optimization problems. In the PSO model, every solution is showed as a particle that is alike to a bird flying via the space of a potential solution. In order to mathematically model the social governance of wolves when designing Grey Wolf Optimizer (GWO), assume the fittest solution as the alpha ( ). Consequently, the second and third best solutions are named beta ( ) and delta ( ), respectively.

Results and discussion: In the present study, the application of Artificial Neural Network (ANN), particle swarm optimization (PSO) and grey wolf optimizer (GWO) for predicting the and was investigated. Based on several statistical operates [such as coefficient of correlation ( ) and mean-square error ( ), mean absolute error ( )], for predicting and was found that the GWO ( =0.9915, =0.9986, Respecively) performs better than the PSO (with =0.9927, =0.9890) and ANN (with = 0.9618, =0.9773) models. Drying behavior of eggplant slices at different air temperatures of 45, 60, and 75C, air velocities of 1, 1.5, and 2 m/s and belt linear speeds of 2.5, 6.5, and 10.5 mm/s was studied. The moisture ratio was reduced exponentially with drying time as expected. When the temperature was increased, the drying time eggplant fruit reduced. In other words, at high temperatures, the transfer of heat and mass was higher and the water loss was more excessive. Effective moisture diffusivity and specific energy consumption were calculated after drying of turnip fruit. Maximum values of for eggplant were 1.14×10-8 m2/s. The lowest amount specific energy consumption ( ) was calculated at the boundary of 130.62 MJ/kg.

کلیدواژه‌ها [English]

  • eggplant
  • effective moisture diffusion and specific energy consumption, ANN, PSO, GWO
Aghbashlo, M., Kianmehr, M.H., Arabhosseini, A., & Nazghelichi T., 2011, Modelling the carrot thin-layer drying in a semi-industrial continuous band Dryer. Czech Journal of Food Science. 29 (5). 528–538.
Aghbashlo, M., Kianmehr, M.H., & Arabhosseini, A., 2009a, Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversion and Management, 50, 1348–1355.
Aghbashlo, M., Kianmehr, M.H., Arabhosseini, A., 2009b, Performance analysis of drying of carrot slices in a semi-industrial continuous band dryer. Journal of Food Engineering, 91, 99–108
Amiri Chayjan R., Kaveh M., & Khayati S., 2017, Modeling some thermal and physical characteristics of terebinth fruit under semi industrial continuous drying. Journal of Food Measurement &Characterization, 11, 12–23.
Amiri Chayjan, R., & Kaveh M., 2016, Drying characteristics of eggplant (Solanum melongenaL.) slices under microwave-convective drying. Research in Agricultur Engineering, 62(4), 170–178.
Amiri Chayjan, R., Kaveh, M., & Khayati, S., 2014, Modeling some drying characteristics of sour cherry (Prunus cerasusL.) under infrared radiation using mathematical models and artificial neural networks. Agricultur Engineergin International: CIGR Journal, 16(1), 265-279.
Amirsadri, S., Mousavirad, S.J., & Ebrahimpour-Komleh, H., 2017, A Levy flight-based grey wolf optimizer combined with backpropagation algorithm for neural network training. Neural Computing & Applications, DOI 10.1007/s00521-017-2952-5 (In Press).
Armaghani, D.J., Shoib., R.S.N.S.B.R., Faizi, K., & Rashid, A.S.A., 2017, Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Computing & Applications, 28(2), 391-405.
Beigi, M., 2017, Mass transfer parameters of celeriac during vacuum drying. Heat & Mass Transfer, 53(4), 1327–1334.
Chakraborty, S., Sarma, M., Bora, J., Faisal, S., & Hazarika, M.K., 2016, Generalization of drying kinetics dur-ing thin layer drying of paddy. Agricultur Engineergin International: CIGR Journal, 18(4), 177-189.
Darici, S., & Sen, S., 2015, Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat & Mass Transfer, 51(8), 1167–1176
Doymaz, I., 2012. Prediction of drying characteristics of pomegranate arils. Food Analytical Methods, 5, 841–848.
Fazaeli, M., Emam-Djomeh, Z., Omid, M., & Kalbasi-Ashtari, A., 2013, Prediction of the physicochemical properties of spray-dried black mulberry (Morus nigra) juice using artificial neural networks. Food & Bioprocess Technology, 6, 585–590.
Ghaderi, A., Abbasi, S., Motevali, A., & Minaei, S., 2012, Comparison of mathematical model and artificial neural network for predication of drying kinetics of mushroom in microwave- vacuum dryer. Chemical Industry & Chemical Engineering Quarterly, 18 (2), 283−293
Ghasemi, E., 2016, Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Computing & Applications, 28(7), 1855- 1862.
Gordan, B., Armaghani, D.J., Hajihassani M., & Monjezi, M., 2016, Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1), 85-97.
Hajihassani, M., Jahed Armaghani, D., Sohaei, H., Tonnizam Mohamad, E., & Marto, A., 2014, Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics, 80, 57–67.
Hasanipanah, M., Amnieh, S.B., Arab, H., & Zamzam, M.S., 2016. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing & Application. DOI 10.1007/s00521-016-2746-1(In Press).
Junqueira, J.R.D.J., Correa, J.L.G., & Ernesto, D.B., 2017, Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. Journal of Food Processing & Preservation. DOI: 10.1111/jfpp.13250. (In Press)
Kamboj, V.K., 2016, A novel hybrid PSO–GWO approach for unit commitment Problem. Neural Computing & Applications, 27(6), 1643–1655.
Karakuzu, C., Karakaya, F., & Cavuslu, M.A, 2016, FPGA implementation of neuro-fuzzy system with improved PSO learning. Neural Networks, 79, 128–140.
Kaveh, M., & Amiri Chayjan, R., 2017, Modeling thin-layer drying of turnip slices under semi-industrial continuous band dryer. Journal of Food Processing & Preservation, 41(2), e12778.
Kaveh, M., & Amiri Chayjan, R., 2015, Mathematical and neural network modelling of terebinth fruit under fluidized bed drying. Research in Agricultur Engineering, 61(2), 55–65
Kennedy, J, & Eberhart, R., 1995, Particle swarm optimization, IEEE international conference on neural networks, Perth, Australia, 1942–1948.
Khoshtaghaza, M.H., Darvishi, H., Minaei, S., 2015, Effects of microwave- fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Journal of Food Science & Technology, 52(8), 4749-4760
Medjahed,S.A., Ait Saadi, T. & Benyettou, A., Ouali, M., 2016, Gray Wolf Optimizer for hyperspectral band selection. Applied Soft Computing, 40, 178–186.
Mirjalili, S, Mirjalili, v., & Lewis, A., 2014, Grey wolf optimizer. Advances in Engineering Software, 69:46–61
Saghatforoush, A., Monjezi, M., Faradonbeh, R.S., & Armaghani, D.J., 2016, Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back‑break induced by blasting. Engineering with Computers, 32 (2), 255–266.
Sulaiman, M.H., Mustaffab, Z., Mohameda, M.R., & Aliman, O., 2015, Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Applied Soft Computing, 32, 286–292.
CAPTCHA Image