نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

چکیده

ارزیابی کیفیت میوه‌ها و سبزیجات با استفاده از روش‌های غیرمخربی نظیر سی‌تی ‌اسکن از جمله پرکاربردترین روش‌های ارزیابی می‌باشد. لذا در این پژوهش، مقدار کوفتگی گلابی در اثر بارگذاری دینامیکی و ارتباط آن با حجم و وزن گلابی طی دوره انبارمانی با استفاده از روش غیرمخرب سی‌تی ‌اسکن مورد بررسی قرار گرفت. قبل از بارگذاری تعداد 50 گلابی با استفاده از سی‌تی‌اسکن بررسی شده و تعداد 27 گلابی با درصد پوسیدگی صفر انتخاب شدند. تحت بارگذاری دینامیکی با استفاده از یک آونگ با سه وزنه 300، 350 و 400 گرمی قرار داده شد و به‌منظور بررسی حجم کل و حجم پوسیدگی نمونه‌ها، در دوره‌های انبارمانی 5، 10 و 15 روز، تصویرگیری با استفاده از سی‌تی ‌اسکن نیز انجام شد. نتایج حاکی از آن بود که با افزایش حجم گلابی، درصد پوسیدگی کاهش پیدا کرد و برخلاف آن با افزایش وزن گلابی، مقدار درصد پوسیدگی نیز افزایش یافت. همچنین بین درصد کاهش حجم و وزن با درصد پوسیدگی یک رابطه مستقیم وجود داشت بدین صورت که با افزایش درصد کاهش حجم و وزن درصد پوسیدگی افزایش پیدا کرد. بنابراین می‌توان نتیجه گرفت هرچه تغییرات حجم و وزن قبل و بعد از ضربه کمتر باشد میوه سالم‌تر بوده و درصد پوسیدگی کمتر خواهد بود.

کلیدواژه‌ها

Abedi, G., and E. Ahmadi. 2013. Design and Evaluation a Pendulum Device to Study Postharvest Mechanical Damage in Fruits : Bruise Modeling of Red Delicious Apple. Australian Journal of Crop Science 7, no. 7: 962–968.
Abera, M.K., P. Verboven, E. Herremans, T. Defraeye, S.W. Fanta, Q.T. Ho, J. Carmeliet, and B.M. Nicolai. 2014. 3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling. Food and Bioprocess Technology 7, no. 2 (February 25): 542–555.
Abiso, E., N. Atheesh*, and H. Addisalem. 2015. Effect of storage methods and ripening stages on postharvest quality of tomato (lycopersicom esculentum mill ) CV. Chali effect of storage methods and ripening stages on postharvest Tomato (Lycopersicom Esculentum L .) Is Botanically Classified as a Fr. Annals. Food Science and Technology 16, no. 1: 127–137.
Ahmadi, E., H.R. Ghassemzadeh, M. Sadeghi, M. Moghaddam, and S.Z. Neshat. 2010. The Effect of Impact and Fruit Properties on the Bruising of Peach. Journal of Food Engineering 97, no. 1: 110–117.
Azadbakht, M., H. Aghili, A. Ziaratban, and M. Vehedi Torshizi. 2017. Application of Artificial Neural Network (ANN) in Drying Kinetics Analysis for Potato Cubes. Carpathian Journal Of Food Science And Technology 17, no. 4: 167–180.
Babic, L., S. Matic-Kekic, N. Dedovic, M. Babic, and I. Pavkov. 2012. Surface Area and Volume Modeling of the Williams Pear (Pyrus Communis). International Journal of Food Properties 15, no. 4: 880–890.
Brusewitz, G.H., and J.A. Bartsch. 1989. Impact Parameters Related to Post Harvest Bruising of Apples. Transactions of the ASAE 32, no. 3: 953.
Brusewitz, G.H., T.G. McCollum, and X. Zhang. 1991. Impact Bruise Resistance of Peaches. Transactions of the ASAE 34, no. 3: 962–965.
Diels, E., M. van Dael, J. Keresztes, S. Vanmaercke, P. Verboven, B. Nicolai, W. Saeys, H. Ramon, and B. Smeets. 2017. Assessment of Bruise Volumes in Apples Using X-Ray Computed Tomography. Postharvest Biology and Technology 128: 24–32.
Ganiron, T.U. 2014. Size Properties of Mangoes Using Image Analysis. International Journal of Bio-Science and Bio-Technology 6, no. 2: 31–42.
Hazbavi, E., M.H. Khoshtaghaza, A. Mostaan, and A. Banakar. 2015. Effect of Storage Duration on Some Physical Properties of Date Palm (Cv. Stamaran). Journal of the Saudi Society of Agricultural Sciences 14, no. 2: 140–146. http://dx.doi.org/10.1016/j.jssas.2013.10.001.
Idah, P.A., E.S.A. Ajisegiri, and M.G. Yisa. 2007. An Assessment of Impact Damage to Fresh Tomato Fruits. AU Journal of Technology 10, no. 4: 271–275.
Kabas, O. 2010. Methods of Measuring Bruise Volume of Pear (Pyrus Communis L.). International Journal of Food Properties 13, no. 5: 1178–1186.
Kotwaliwale, N., P.R. Weckler, G.H. Brusewitz, G.A. Kranzler, and N.O. Maness. 2007. Non-Destructive Quality Determination of Pecans Using Soft X-Rays. Postharvest Biology and Technology 45, no. 3: 372–380.
Mohammad Shafie, M., A. Rajabipour, S. Castro-Garcia, F. Jimenez-Jimenez, and H. Mobli. 2015. Effect of Fruit Properties on Pomegranate Bruising. International Journal of Food Properties 18, no. 8: 1837–1846.
Opara, U.L., and P.B. Pathare. 2014. Bruise Damage Measurement and Analysis of Fresh Horticultural Produce-A Review. Postharvest Biology and Technology 91: 9–24.
Pathare, P.B., U.L. Opara, C. Vigneault, M.A. Delele, and F.A.J. Al-Said. 2012. Design of Packaging Vents for Cooling Fresh Horticultural Produce. Food and Bioprocess Technology 5, no. 6: 2031–2045.
Peleg, K., and S. Hinga. 1986. Simulation of Vibration Damage in Produce Transportation. Transactions of the ASAE 29, no. 2: 633–641.
Sabzi, S., P. Javadikia, H. Rabani, and A. Adelkhani. 2013. Mass Modeling of Bam Orange with ANFIS and SPSS Methods for Using in Machine Vision. Measurement: Journal of the International Measurement Confederation 46, no. 9: 3333–3341. http://dx.doi.org/10.1016/j.measurement.2013.06.005.
Shahbazi, F., and S. Rahmati. 2013. Mass Modeling of Sweet Cherry (Prunus Avium L) Fruit with Some Physical Characteristics. Food and Nutrition Sciences 4, no. January: 1–5.
Soltani, M., R. Alimardani, and M. Omid. 2011. Modeling the Main Physical Properties of Banana Fruit Based on Geometrical Attributes. International Journal of Multidisciplinary Sciences and Engineering 2, no. 2: 1–6. www.ijmse.org.
Stropek, Z., and K. Gołacki. 2015. A New Method for Measuring Impact Related Bruises in Fruits. Postharvest Biology and Technology 110: 131–139.
Zarifneshat, S., A. Rohani, H.R. Ghassemzadeh, M. Sadeghi, E. Ahmadi, and M. Zarifneshat. 2012. Predictions of Apple Bruise Volume Using Artificial Neural Network. Computers and Electronics in Agriculture 82: 75–86.
CAPTCHA Image