نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 Regional Forensic Science Laboratory, Government of NCT of Delhi, Home Department, Chanakyapuri, New Delhi, 110021, India.

2 Department of Anthropology, University of Delhi, Delhi, 110007, India

چکیده

تحقیقات پزشکی قانونی برای شناسایی مسائل کیفیت و ایمنی مرتبط با غذا و محصول آن بسیار حیاتی است. از GC-MS به‌طور گسترده در تجزیه و تحلیل مواد غذایی استفاده می‌‍شود. مطالعه حاضر، برای شناسایی ترکیبات فعال برخی از ادویه‌های خانگی و همچنین برای شناسایی مواد تقلبی و آلاینده‌هایی که ممکن است در نمونه‌ها وجود داشته باشد، استفاده شده است. ادویه‌های مورد استفاده در تحقیق حاضر فلفل سیاه، زیره، رازیانه، گشنیز و زردچوبه می‌باشد. عصاره ادویه‌ها با شناسایی ترکیبات فعال مختلف ادویه‌ها، مانند پیپرین، کاریوفیلن و 3-کارن در فلفل سیاه، کومینالدئید و 1، 3- متادین- 7- آل در زیره سبز، آنتول و فنچون در رازیانه، لینالول و ژرانیل وینیل اتر در گشنیز و تورمرون و زینجی برن در زردچوبه در احراز هویت این ادویه‌ها مفید بودند. مواد تقلبی شناسایی‌شده از نظر کیفی، تقلبی‌های گیاهی بودند. ثابت شده است که GC-MS یک ابزار موثر در تشخیص مواد تقلبی گیاهی، آلاینده‌های میکروبی، و پسماندهای شیمیایی کشاورزی و همچنین زباله‌های صنعتی و تولیدی است.

کلیدواژه‌ها

موضوعات

  1. Aceto, M. (2015). Food forensics. In Comprehensive Analytical Chemistry (Vol. 68, pp. 441-514). Elsevier. https://doi.org/10.1016/B978-0-444-63340-8.00009-1
  2. Ainane, A., Khammour, F., Charaf, S., Elabboubi, M., Elkouali, M., Talbi, M., ... & Ainane, T. (2019). Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Materials Today: Proceedings, 13, 474- 485. https://doi.org/10.1016/j.matpr.2019.04.004
  3. Arrests in Indian spice adulteration.https://www.intracen.org/blog/Arrests-in-Indian-spice-adulteration.Accessed onDecember 25,2021.
  4. Atkins, P. (2015). Analysis of Organic Marker Compounds and Hazardous Organic Compounds by GC/MS to Identify Contamination, Counterfeiting and Adulteration of Spices, Inorganic and Organic Certified materials, SPEXCertiPrep, https://cdn.technologynetworks.com/ep/pdfs/analysis-of-organic-marker-compounds-and-hazardous-organic-compounds-by-gcms-to-identify.pdf
  5. Attokaran, Natural food flavors & colorants, Wiley-Blackwell, 2011
  6. Bansal, , Singh, A., Mangal, M., Mangal, A. K., & Kumar, S. (2017). Food adulteration: Sources, health risks, and detection methods. Critical reviews in food science and nutrition, 57(6), 1174-1189. DOI:10.1080/10408398.2014.967834
  7. Barata, L. M., Andrade, E. H., Ramos, A. R., de Lemos, O. F., Setzer, W. N., Byler, K. G., ... & da Silva, J. K. R. (2021). Secondary metabolic profile as a tool for distinction and characterization of cultivars of black pepper (Piper nigrum) cultivated in Pará State, Brazil. International journal of molecular sciences, 22(2), 890.doi: 10.3390/ijms22020890
  8. Bessaire, T., Savoy, M. C., Mujahid, C., Tarres, A., & Mottier, P. (2019). A new high-throughput screening method to determine multiple dyes in herbs and spices. Food Additives & Contaminants: Part A, 36(6), 836-850., doi: https://doi.org/10.1080/19440049.2019.1596320
  9. Bhoomaa, , Nagasathiya, K., Vairamani, M., & Parani, M. (2020). Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food chemistry, 309, 125793.doi: https://doi.org/10.1016/j.foodchem.2019.125793
  10. Braden T. (2014). Food fraud and adulterated ingredients – Background, Issues and Federal action, Nova science publishers
  11. Carbanilide; https://patents.google.com/patent/EP1443045A9/en(assessed on 10.05.21)]
  12. Chiwara, B., Makhura, E., Danha, G., Hlabangana, N., Gorimbo, J., & Muzenda, E. (2018). Optimization of the pyrolysis oil fraction: An attainable region approach. Detritus, (3), 68.doi: 31025/2611-4135/2018.13691
  13. Danciu, V., Hosu, A., & Cimpoiu, C. (2018). Thin-layer chromatography in spices analysis. Journal of Liquid Chromatography & Related Technologies, 41(6), 282-300. https://doi.org/10.1080/10826076.2018.1447895
  14. Dibutyl phthalate; https://cameochemicals.noaa.gov/chemical/5717(assessed on 10.05.21)
  15. Dinesh Singh Bisht, K, Ramakrishna, A. G, Venugopal. (2022). Trans-Anethole Based Detection of Adulteration of Fennel (FoeniculumVulgare Mill.) Seeds in Cumin (Cuminum Cyminum L.) Seeds Using GC & GCMS. International Journal of Innovative Research in Science & Engineering, 2; 811-816.
  16. Duke's Phytochemical and Ethnobotanical Databases; Chemicals found in Carica papaya; https://phytochem.nal.usda.gov/phytochem/plants/show/346?qlookup=papaya&offset=0&max=20&et= (assessed on 17.05.21)
  17. Duke's Phytochemical and Ethnobotanical Databases; Chemicals found in Pimpinella anisum;https://phytochem.nal.usda.gov/phytochem/plants/show/1502?qlookup=Pimpinella+anisum&offset=0&max=20&et= (assessed on 17.05.21)
  18. Ekade, P., & Manik, S. R. (2014). Investigations on secondary metabolites in different parts of Radermachera xylocarpa using GC-MS. Journal of Pharmacognosy and Phytochemistry, 2(6), 39-47. https://www.phytojournal.com/archives/2014.v2.i6.274/investigations-on-secondary-metabolites-in-different-parts-of-radermachera-xylocarpa-using-gc-ms
  19. Ethyleneoxide; https://www.epa.gov/sites/production/files/2016-09/documents/ethylene-oxide.pdf> (assessed on 10.05.21)
  20. Ethylene oxide; https://www.who.int/ipcs/publications/cicad/en/cicad54.pdf (assessed on 10.05.21)
  21. Everstine, K., Spink, J., & Kennedy, S. (2013). Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. Journal of food protection, 76(4), 723-735., doi: 4315/0362-028X.JFP-12-399
  22. Farag, M. A., Hegazi, N., Dokhalahy, E., & Khattab, A. R. (2020). Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food chemistry, 331, 127358.doi: https://doi.org/10.1016/j.foodchem.2020.127358
  23. Flavor profile of spices, Spice Board India, https://www.indianspices.com/spices-development/properties/flavor-profile-spices.html (Accessed on December 25, 2021).
  24. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT), Crops, 2019, website <http://www.fao.org/faostat/en/#data/QC (assessed on 08.03.2021)

25.  Food Contamination in India: Fake ‘Cumin Seeds’ Factory Busted,Gurneel Kaur,22.11.2019; https://www.grainmart.in/news/food-contamination-in-india-fake-cumin-seeds-factory-busted. Accessed onDecember 25,2021.

  1. Food fraud– Intention, detection and management. Food safety technical toolkit for Asia and the Pacific No. 5. Bangkok,Food and Agriculture Organization of the United Nations Bangkok, 2021.
  2. FSSAI enforcement report, website <https://www.fssai.gov.in/cms/enforcementreport.php (assessed on 10.03.2021)
  3. Gul, I., Nasrullah, N., Nissar, U., Saifi, M., & Abdin, M. Z. (2018). Development of DNA and GC-MS Fingerprints for Authentication and Quality Control of Piper nigrum and Its Adulterant Carica papaya L. Food analytical methods, 11(4), 1209- 1222. https://link.springer.com/article/10.1007/s12161-017-1088-7
  4. Gul, M. K., & Şeker, M. (2006). Comparative analysis of phytosterol components from rapeseed (Brassica napus ) and olive (Olea europaea L.) varieties. European Journal of Lipid Science and Technology, 108(9), 759-765.doi:10.1002/ejlt.200600085
  5. Hadi Mohammed, Y., Ghaidaa, J. M., & Imad, H. H. (2016). Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8(2), 8-24.doi: https://doi.org/10.5897/JPP2015.0364
  6. Hakme, E., Lozano, A., Uclés, S., Gómez-Ramos, M. M., & Fernández-Alba, A. R. (2018). High-throughput gas chromatography-mass spectrometry analysis of pesticide residues in spices by using the enhanced matrix removal-lipid and the sample dilution approach. Journal of Chromatography A, 1573, 28-41., doi: https://doi.org/10.1016/j.chroma.2018.08.046
  7. Hamza, L. F., Kamal, S. A., & Hameed, I. H. (2015). Determination of metabolites products by Penicillium expansum and evaluating antimicobial activity. Journal of Pharmacognosy and Phytotherapy, 7(9), 194-220.doi:https://doi.org/10.5897/JPP2015.0360
  8. Hameed H., Altameme H. J., and Idan S. A. (2016). Artemisia annua: Biochemical products analysis of methanolic aerial parts extract and anti-microbial capacity, Research Journal of Pharmaceutical, Biological and Chemical Sciences.
  9. Hong, E., Lee, S. Y., Jeong, J. Y., Park, J. M., Kim, B. H., Kwon, K., & Chun, H. S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture, 97(12), 3877-3896. https://doi.org/10.1002/jsfa.8364

35.  https://www.indiatoday.in/crime/story/fake-cumin-made-from-broom-bits-sized-up-rae-bareli-1626995-2019-12-10.Accessed on December 25,2021.

  1. Indian trade portal, spice industry in India, website <https://www.indiantradeportal.in/vs.jsp?lang=0&id=0,30,50,180#:~:text=India%20is%20the%20 world's%20largest,the%20global%20trading%20in%20spices (assessed on 08.03.2021)
  2. Jaiswal, S., Yadav, D. S., Mishra, M. K., & Gupta, A. K. (2016). Detection of adulterants in spices through chemical method and thin layer chromatography for forensic consideration. Int J Dev Res, 6(08), 8824-8827.<https://www.journalijdr.com/sites/default/files/issue-pdf/5989.pdf>
  3. Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K., & Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa) seeds cultivated in Bangladesh and India. Heliyon, 6(10), e05343. https://doi.org/10.1016/j.heliyon.2020.e05343
  4. King G., Haughey S. A. & Elliott C. (2017). T., Herb and Spice Fraud; the Drivers, Challenges and Detection, Food Control, 2017, https://doi.org/10.1016/j.foodcont.2017.12.031
  5. Koul, B., Taak, P., Kumar, A., Khatri, T., & Sanyal, I. (2018). The Artemisia genus: A review on traditional uses, phytochemical constituents, pharmacological properties and germplasm conservation. J. Glycom. Lipidom, 7, 1-7.
  6. Lavandulol;https://pubchem.ncbi.nlm.nih.gov/compound/4-Hexen-1-ol_-5-methyl-2-_1-methylethenyl (assessed on 10.05.21)
  7. Lees , Food authenticity and traceability, CRC press, 2000
  8. Marie Willocx, M., Van der Beeten, I., Asselman, P., Delgat, L., Baert, W., Janssens, S. B., ... & Vanhee, C. (2022). Sorting out the plants responsible for a contamination with pyrrolizidine alkaloids in spice seeds by means of LC-MS/MS and DNA barcoding: Proof of principle with cumin and anise spice seeds. Food Chemistry: Molecular Sciences, 4, 100070. https://doi.org/10.1016/j.fochms.
  9. Matsushita, T., Zhao, J. J., Igura, N., & Shimoda, M. (2018). Authentication of commercial spices based on the similarities between gas chromatographic fingerprints. Journal of the Science of Food and Agriculture, 98(8), 2989-3000.doi:https://doi.org/10.1002/jsfa.8797
  10. Mermelstein H., Food Forensics: Investigating Food Crime, Food Technology, IFT, 2018, website,https://www.ift.org/news-and-publications/food-technology magazine/ issues/2018/ january/columns/food-safety-and-quality-food-crimes-adulteration-food-fraud (assessed on 20.03.2021)
  11. Msagati T. A. M., Food Forensics and Toxicology, Wiley Blackwell, 2018
  12. Osman, A. G., Raman, V., Haider, S., Ali, Z., Chittiboyina, A. G., & Khan, I. A. (2019). Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. Journal of AOAC International, 102(2), 376-385.doi:https://doi.org/10.5740/jaoacint.18-0389
  13. Pal, M., & Mahinder, M. (2020). Food adulteration: a global public health concern. Food Drink Indust, 38-40.
  14. Paradkar, M. M., Singhal, R. S., & Kulkarni, P. R. (2001). A new TLC method to detect the presence of ground papaya seed in ground black pepper. Journal of the Science of Food and Agriculture, 81(14), 1322-1325.
  15. Pastor, K., Ačanski, M., & Vujić, D. (2019). Gas chromatography in food authentication. In Gas Chromatography-Derivatization, Sample Preparation, Application (p. 109). IntechOpen.
  16. Peng, D. Q., Yu, Z. X., Wang, C. H., Gong, B., Liu, Y. Y., & Wei, J. H. (2020). Chemical Constituents and Anti-Inflammatory Effect of Incense Smoke from Agarwood Determined by GC-MS. International Journal of Analytical Chemistry, 2020.doi: https://doi.org/10.1155/2020/4575030
  17. Piper longum; https://assets.researchsquare.com/files/rs-31834/v1/SupplementaryTableS1.docx> (assessed on 17.05.21)
  18. Raghavan, Handbook of spices, seasonings and flavorings, CRC Press, 2006
  19. Rani, R., Medhe, S., & Srivastava, M. (2015). HPTLC–MS based method development and validation for the detection of adulterants in spices. Journal of Food Measurement and Characterization, 9(2), 186-194. DOI:1007/s11694-015-9223-x
  20. Sattar, S., Das, P. C., Hossain, M. S., Sarower, K., & Uddin, M. B. (2019). Study on Consumer Perception towards Quality of Spices Powder Available in Bangladesh. Open Journal of Safety Science and Technology, 9(4), 137-144.https://doi.org/10.4236/ojsst.2019.94009
  21. Seasoning and Spices Market Size, Share & Trends Analysis Report By Product (Herbs, Salt & Salts Substitutes, Spices), 2020; <Global Seasonings & Spices Market Size Report, 2020-2027 (grandviewresearch.com)> (assessed on 02.02.22)
  22. Sebaei, A. S., Youssif, M. I., & Ghazi, A. A. M. (2019). Determination of seven illegal dyes in Egyptian spices by HPLC with gel permeation chromatography clean up. Journal of Food Composition and Analysis, 84, 103304. doi: https://doi.org/10.1016/j.jfca.2019.103304
  23. Shareef, H. K., Muhammed, H. J., Hussein, H. M., & Hameed, I. H. (2016). Antibacterial effect of ginger (Zingiber officinale) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Oriental Journal of Chemistry, 32(2), 20-40.doi: http://dx.doi.org/10.13005/ojc/320207
  24. Shreadah, M. A., El Moneam, N. M. A., Al-Assar, S. A., & Nabil-Adam, A. (2018). Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food science and biotechnology, 27(4), 963-979.DOI: 1007/s10068-018-0323-3

60.  Spice Board halts export of adulterated cumin consignment. Press Trust of India. https://www.business-standard.com/article/pti-stories-board-halts-export-of-adulterated-cumin-consignment-118051001252_1.html. Accessed on December 25, 2021.

  1. Tahri, K., Tiebe, C., El Bari, N., Hübert, T., & Bouchikhi, B. (2016). Geographical provenience differentiation and adulteration detection of cumin by means of electronic sensing systems and SPME-GC-MS in combination with different chemometric approaches. Analytical Methods, 8(42), 7638-7649. https://doi.org/10.1039/C6AY01906D

62.  Traders arrested from Burrabazar on cumin dulterationcharges.https://www.telegraphindia.com/ my-kolkata/news/trader-arrested-from-burrabazar-on-cumin-adulteration-charges/cid/1836396.

  1. Umar, N. M., Parumasivam, T., Aminu, N., & Toh, S. M. (2020). Phytochemical and pharmacological properties of Curcuma aromatica Salisb (wild turmeric). Journal of Applied Pharmaceutical Science, 10(10), 180-194.doi:7324/JAPS.2020.1010018

64.  Vadivel, V., Ravichandran, N., Rajalakshmi, P., Brindha, P., Gopal, A., & Kumaravelu, C. (2018). Microscopic, phytochemical, HPTLC, GC– MS and NIRS methods to differentiate herbal adulterants: Pepper and papaya seeds. Journal of Herbal Medicine, 11, 36-45. https://doi.org/10.1016/j.hermed.2018.01.004

  1. Bharathi, S. K. V., Sukitha, A., Moses, J. A., & Anandharamakrishnan, C. (2018). Instrument-based detection methods for adulteration in spice and spice products–A review. Journal of Spices and Aromatic Crops, 27(2), 106-118.
  2. Xiao Ma, D., Mao, W. W., Zhou, P., Li, P., & Li, H. J. (2015). Distinguishing Foeniculum vulgare fruit from two adulterants by combination of microscopy and GC–MS analysis. Microscopy Research and Technique, 78(7), 633-641. DOI: 1002/jemt.22523 
  3. Yichen, H, Y., Kong, W., Yang, X., Xie, L., Wen, J., & Yang, M. (2014). GC–MS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: Analysis of essential oils. Journal of separation science, 37(4), 404-411. DOI:1002/jssc.201301102

 

CAPTCHA Image