نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در این پژوهش، ریزپوشانی کافئین در نانولیپوزوم‌های پوشش‌داده شده با کیتوزان به‌منظور کاهش طعم تلخ این ترکیب، و سپس تولید پودر نوشیدنی غنی‌شده با آن صورت گرفت. ابتدا نانوکیتوزوم‌ها، در نسبت‌های 1:9، 2:8 و 3:7 لستین-کلسترول، با روش هیدراتاسیون لایه نازک تهیه شدند. میانگین اندازه ذرات و پتانسیل زتا برای نسبت‌های مختلف لستین-کلسترول، به ترتیب در محدوده 6/443- 3/133 نانومتر و 96/40+ تا 36/48+ بدست آمد. نمونه کیتوزومی با نسبت 1:9 لستین-کلسترول، پایداری خوبی را در طول 60 روز نگهداری نشان داد. نانوکیتوزوم‌های دارای نسبت 1:9 لستین-کلسترول در فرمولاسیون نوشیدنی‌ها استفاده شدند. نمونه‌های نوشیدنی پس از تهیه شدن در فرمولاسیون‌های مختلف (نمونه‌های حاوی 3 و 5% محلول آزاد کافئین، نمونه‌های حاوی3 و 5% محلول کیتوزومی کافئین و نمونه‌ی شاهد)، مورد ارزیابی حسی قرار گرفتند که نتایج نشان‌دهنده‌ی مقبولیت طعم نمونه‌های حاوی نانوکیتوزوم کافئین در مقایسه با نمونه‌های حاوی کافئین آزاد بود. سپس، نوشیدنی‌ها از نظر خصوصیات فیزیکی و شیمیایی (pH، اسیدیته، درجه بریکس و رنگ) ارزیابی شدند. در ادامه، نوشیدنی‌ها با استفاده از دستگاه خشک‌کن انجمادی به شکل پودر درآمدند تا ویژگی‌های شاخص انحلال‌پذیری آب و هیگروسکوپی آن‌ها مورد ارزیابی قرار گیرند. نتایج حاصل از اندازه‌گیری میزان انحلال‌پذیری و هیگروسکوپی پودر نوشیدنی‌ها، نشان داد که نمونه‌های حاوی نانوکیتوزوم کافئین انحلال‌پذیری و هیگروسکوپی پایینی نسبت به سایر نمونه‌ها دارند. نتایج کلی این پژوهش، نشان‌دهنده‌ی کارآمد بودن نانوکیتوزوم‌ها در پوشش‌دهی طعم تلخ کافئین بود. لذا با تولید نانوکیتوزوم‌های کافئین و استفاده از آن در فرمولاسیون پودر نوشیدنی‌ها، می‌توان نوشیدنی‌های انرژی‌زا، بدون نیاز به استفاده از مقادیر بالای ساکارز تولید کرد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Akhter, S., Abid, H., Yasmin, A., & Masood, S. (2010). Preparation and evaluation of physical and chemical characteristics of instant mango juice powder. Pakistan Journal of Biochemistry and Molecular Biology, 43(2), 58–60.
  2. Briuglia, M.L., Rotella, C., McFarlane, A., & Lamprou, D.A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5(3), 231–242. https://doi.org/10.1007/s13346-015-0220-8
  3. Cai, Y.-Z., & Corke, H. (2000). Production and properties of spray‐dried Amaranthus betacyanin Journal of Food Science, 65(7), 1248–1252. https://doi.org/101111/j.1365-2621.2000.tb10273.x
  4. Chow, C.H., Kan, Y.C., & Ho, K.S. (2019). A simple and rapid gas chromatographic method for routine caffeine determination in beverages using nitrogen phosphorus detector. Journal of Analytical Chemistry, 74(8), 764–770. https://doi.org/10.1134/S1061934819080045
  5. Chorilli, M., Calixto, G., Rimério, T.C., & Scarpa, M.V. (2013). Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. Journal of Dispersion Science and Technology, 34(10), 1465–1470. https://doi.org/10.1080/01932691.2012.739535
  6. Fan, M., Xu, S., Xia, S., & Zhang, X. (2008). Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. European Food Research and Technology, 227(1), 167–174. https://doi.org/10.1007/s00217-007-0706-9
  7. Fang, J.Y., Hong, C.T., Chiu, W.T., & Wang, Y.Y. (2001). Effect of liposomes and niosomes on skin permeation of enoxacin. International Journal of Pharmaceutics, 219(1–2), 61–72. https://doi.org/10.1016/S0378-5173(01)00627-5
  8. Foteini, P., Pippa, N., Naziris, N., & Demetzos, C. (2019). Physicochemical study of the protein–liposome interactions: Influence of liposome composition and concentration on protein binding. Journal of Liposome Research, 29(4), 313–321. https://doi.org/10.1080/08982104.2018.1468774
  9. Ghorbanzade, T., Jafari, S.M., Akhavan, S., & Hadavi, R. (2016). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.08.022
  10. Gupta, U., Singh, V.K., Kumar, V., & Khajuria, Y. (2014). Spectroscopic Studies of Cholesterol : Fourier. August 2015. https://doi.org/10.1166/mat.2014.1161
  11. Homayoonfal, M., Mousavi, S.M., Kiani, H., Askari, G., Desobry, S., & Arab-Tehrany, E. (2021). Encapsulation of berberis vulgaris anthocyanins into nanoliposome composed of rapeseed lecithin: A comprehensive study on physicochemical characteristics and biocompatibility. Foods, 10(3). https://doi.org/10.3390/foods10030492
  12. Ilgaz, S., Sat, I.G., & Polat, A. (2018). Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. Journal of Food Science and Technology, 55(4), 1407–1415. https://doi.org/10.1007/s13197-018-3055-8
  13. Islam, M.T., Alencar, M., Mata, A., Paz, M., Matos, L.A., Sousa, J.M.C., & Melo-Cavalcante, A.A.C. (2016). Coffee: A health fuel-blot popular drinking. International Journal of Pharmacy and Pharmaceutical Sciences, 8(1), 1–7.
  14. Jafari, S. M. (2017). An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809436-5.00001-X
  15. Jafari, S., Ghalegi, M., & Dehnad, D. (2017). In fl uence of spray drying on water solubility index , apparent density , and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070
  16. Kamel Rahimi,, Elhami Rad, A., & Hemti Kakhki, A. (2014). Formulation and evaluation of fruit drink powder. Innovations in Food Science and Technology, 7(4). (In Persian)
  17. Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 8(5), 1567–1636. https://doi.org/10.3390/md8051567
  18. Laridi, R., Kheadr, E.E., Benech, R.O., Vuillemard, J.C., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: Optimization, stability and release during milk fermentation. International Dairy Journal, 13(4), 325–336. https://doi.org/10.1016/S0958-6946(02)00194-2
  19. Liu, N., & Park, H. J. (2010). Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids and Surfaces B: Biointerfaces, 76(1), 16–19. https://doi.org/10.1016/j.colsurfb.2009.09.041
  20. Mahdavi, S.A., Jafari, S.M., Assadpour, E., & Ghorbani, M. (2016). Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. Journal of Food Engineering, 181, 59–66. https://doi.org/10.1016/j.jfoodeng.2016.03.003
  21. Malheiros, P., da S., Sant’Anna, V., Barbosa, M., de S., Brandelli, A., & Franco, B.D.G. de M. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. International Journal of Food Microbiology, 156(3), 272–277. https://doi.org/10.1016/j.ijfoodmicro.2012.04.004
  22. Miller, W. L. (2007). Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1771(6), 663–676. https://doi.org/10.1016/j.bbalip.2007.02.012
  23. Mohammadi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced Pharmaceutical Bulletin, 4(Suppl 2), 569–575. https://doi.org/10.5681/apb.2014.084
  24. Mohammed, O. (2018). Determination of Caffeine Level in Brands of Instant Coffee Available in Ethiopian Market Using Uv-Vis Spectrophotometry.
  25. Mohan, V., Naske, C.D., Britten, C.N., Karimi, L., & Walters, K.B. (2020). Hydroxide-catalyzed cleavage of selective ester bonds in phosphatidylcholine: An FTIR study. Vibrational Spectroscopy, 109, 103055. https://doi.org/10.1016/j.vibspec.2020.103055
  26. Mozafari, M.R. (2014). Nanoliposomes : Preparation and Analysis Chapter 2 Nanoliposomes : Preparation and Analysis. Methods in Molecular Biology, 605(May), 29–50. https://doi.org/10.1007/978-1-60327-360-2
  27. Muhamad, I.I., Abang Zaidel, D.N., Hashim, Z., Mohammad, N.A., & Abu Bakar, N.F. (2019). Improving the delivery system and bioavailability of beverages through nanoencapsulation. In Nanoengineering in the Beverage Industry: Volume 20: The Science of Beverages. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816677-2.00010-7
  28. Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience, 13, 49–55. https://doi.org/10.1016/j.fbio.2015.12.002
  29. Sarabandi, K., & Jafari, S.M. (2020). Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chemistry, 310, 125951. https://doi.org/10.1016/j.foodchem.2019.125951
  30. Saqashirpour, S. (2013). Nanoliposome production for simultaneous encapsulation of vitamin E and vitamin C by thermal method (Mozaffari). Tabriz University.
  31. Sarabandi, K., Jafari, S.M., Mohammadi, M., Akbarbaglu, Z., Pezeshki, A., & Khakbaz Heshmati, M. (2019b). Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 96, 442–450. https://doi.org/10.1016/j.foodhyd.2019.05.047
  32. Sarabandi, K., Mahoonak, A.S., Hamishehkar, H., Ghorbani, M., & Jafari, S.M. (2019a). Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 251, 19–28. https://doi.org/10.1016/j.jfoodeng.2019.02.004
  33. Seyedabadi, M.M., Rostami, H., Jafari, S.M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 40(October 2020). https://doi.org/10.1016/j.fbio.2020.100857
  34. Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of Physical Science, 25(1), 59–75.
  35. Shin, G.H., Chung, S. K., Kim, J.T., Joung, H.J., & Park, H.J. (2013). Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Journal of Agricultural and Food Chemistry, 61(46), 11119–11126. https://doi.org/10.1021/jf4035404
  36. Sivrikaya, S. (2020). A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 37(3), 488–495. https://doi.org/10.1080/19440049.2020.1711972
  37. Solghi, S., Emam‐Djomeh, Z., Fathi, M., & Farahani, F. (2020). The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. Journal of Food Process Engineering, 43(6), e13403. https://doi.org/1111/jfpe.13403
  38. Subramani, T. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04360-2
  39. Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science and Emerging Technologies, 19, 29–43. https://doi.org/10.1016/j.ifset.2013.03.002
  40. Tavakoli, H., Hosseini, O., Jafari, S.M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231–9240. https://doi.org/10.1021/acs.jafc.8b02759
  41. Wanule, D., Balkhande, J.V., Ratnakar, P.U., Kulkarni, A.N., & Bhowate, C.S. (2014). Extraction and FTIR analysis of chitosan from American cockroach, Periplaneta americana. International Journal of Engineering Science and Innovative Technology, 3(3), 299–304.
  42. Wu, P.C., Tsai, Y.H., Liao, C.C., Chang, J.S., & Huang, Y. Bin. (2004). The characterization and biodistribution of cefoxitin-loaded liposomes. International Journal of Pharmaceutics, 271(1–2), 31–39. https://doi.org/10.1016/j.ijpharm.2003.10.034
  43. Wu, Z., Guan, R., Lyu, F., Liu, M., Gao, J., & Cao, G. (2016). Optimization of preparation conditions for lysozyme nanoliposomes using response surface methodology and evaluation of their stability. Molecules, 21(6). https://doi.org/10.3390/molecules21060741

 

 

CAPTCHA Image