نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده داروسازی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشکده کشاورزی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

3 مؤسسه تحقیقات واکسن و سرم‌سازی رازی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

4 مرکز تحقیقات آزمایشگاهی غذا و دارو، اداره کل آزمایشگاه‌های مرجع کنترل غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران و دانشیار گروه علوم و صنایع غذایی، دانشکده تغذیه و رژیم‌شناسی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، تهران، ایران

5 گروه سم‌شناسی و داروشناسی، دانشکده داروسازی و علوم دارویی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران

چکیده

آلودگی محیط‌زیست به فلزات سنگین، امروزه به یکی از مشکلات بزرگ زیست‌محیطی تبدیل شده است. در همین راستا، هدف از انجام این مطالعه بررسی توانایی جذب فعال و غیر فعال فلزات سنگین توسط تعدادی از سویه‌های LAB در محیط آزمایشگاهی (محلول آبی) و ماده غذایی (سبزیجات برگدار خوراکی) بود. نتایج مرحله آزمایشگاهی نشان داد که بطور کلی راندمان حذف فلزات سنگین توسط باکتری‌های LAB در حالت غیر فعال و کشته‌شده بطور قابل توجهی بالاتر از حالت فعال این باکتری‌ها بود بطوری‌که بیشترین درصد جذب غیرفعال فلز سرب، کادمیوم و نیکل به‌ترتیب برابر 01/90، 98/81 و 56/86 % بود که به‌ترتیب توسط سویه‌های غیرفعال L. casei، L. plantarum و Ent. Facium صورت گرفت. در بین سویه‌های زنده نیز باکتری Ent. Facium بالاترین توانایی جذب فعال در محلول آبی را نشان داد. مشاهدات میکروسکوپ الکترونی تأیید کرد که بخش عمده این فلزات سمی با تجمع و اتصال در سطح سلول باکتری به‌طور قابل توجهی به سطح سلول‌های زنده آسیب می‌رساند ولی تأثیر چندانی بر ساختار سطح سلولی باکتری‌های کشته شده ندارد. ترکیبی از سه سویه باکتریایی در مقایسه با حالت تکی این باکتری‌ها اثر هم‌افزایی بر روی خواص اتصال فلزات سمی داشت بطوری‌که هم در حالت فعال و هم غیر فعال در مدت زمان کمتر از 15 دقیقه 99-90 درصد فلزات سنگین از سبزیجات برگدار خوراکی حذف شدند. نتایج این تحقیق بطور کلی نشان داد ظرفیت اتصال توده مرده بطور قابل توجهی بالا بوده و امکان دفع و استفاده مجدد از زیست‌توده در صورت جذب زیستی وجود دارد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Afraz, V., Younesi, H., Bolandi, M., & Hadiani, M.R. (2021). Assessment of resistance and biosorption ability of Lactobacillus paracasei to remove lead and cadmium from aqueous solution. Water Environment Research, 93(9), 1589-1599. https://doi.org/10.1002/wer.1540
  2. Ameen, F.A., Hamdan, A.M., & El-Naggar, M.Y. (2020). Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-019-57210-3
  3. Arivalagan, P., Singaraj, D., Haridass, V., & Kaliannan, T. (2014). Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecological Engineering, 71, 728-735. https://doi.org/10.1016/j.ecoleng.2014.08.005
  4. Astolfi, M. L., Protano, C., Schiavi, E., Marconi, E., Capobianco, D., Massimi, L., & Mastromarino, P. (2019). A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environment International, 130, 104818. https://doi.org/10.1016/j.envint.2019.05.012
  5. Bhakta, J. N., Ohnishi, K., Tsunemitsu, Y., Ueno, D., & Manna, K. (2022). Assessment of arsenic sorption properties of lactic acid bacteria isolated from fecal samples for application as bioremediation tool. Applied Water Science, 12, 116. https://doi.org/10.1007/s13201-022-01634-2
  6. Codex Alimntarius commission (WHO/FAO). (2001). Food additives and contaminants joint, (WHO/FAO). Food standard program. ALINORM 01/12A, Geneva: Jo, 1-289.
  7. Daisley, B.A., Monachese, M., Trinder, M., Bisanz, J.E., Chmiel, J.A., Burton, J.P., & Reid, G. (2019). Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes,10(3), 321-333. https://doi.org/10.1080/19490976.2018.1526581
  8. Delgado, A., Anselmo, A.M., & Novais, J.M. (1998). Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environment Research, 70(3); 370-376. https://doi.org/10.2175/106143098X125019
  9. Elahian, F., Moghimi, B., Dinmohammadi, F., Ghamghami, M., Hamidi, M., & Mirzaei, S.A. (2013). The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA and Cell Biology, 32(3), 90-97. https://doi.org/10.1089/dna.2012.1902
  10. Elsanhoty, R.M., Al-Turki, I.A., & Ramadan, M.F. (2016). Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and Technology, 74(3), 625-638. https://doi.org/10.2166/wst.2016.255
  11. Fakhri, Y., Djahed, B., Toolabi, A., Raoofi, A., Gholizadeh, A., Eslami, H., Taghavi, M., Alipour, M.R., & Mousavi Khaneghah, A. (2020). Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. Toxin Reviews, 40(4), 1505-1517. https://doi.org/10.1080/15569543.2020.1737826
  12. Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M., & Gänzle, M.G. (2015). Metabolism of phenolic compounds by Lactobacillus during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272-279. https://doi.org/10.1016/j.fm.2014.08.018
  13. Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: the possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284-292. https://doi.org/10.1016/j.mib.2013.06.008
  14. Goyal, P., Belapurkar, P., & Kar, A. (2019). A review on in vitro and in vivo bioremediation potential of environmental and probiotic species of Bacillus and other probiotic microorganisms for two heavy metals, Cadmium and Nickel. Biosciences Biotechnology Research Asia, 16(1), 1-13. https://doi.org/10.13005/bbra/2714
  15. Halttunen, T., Salminen, S., & Tahvonen, R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114(1), 30- 35. https://doi.org/10.1016/j.ijfoodmicro.2006.10.040
  16. Halttunen, T., Salminen, S., Meriluoto, J., Tahvonen, R., & Lertola, K. (2008). Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International Journal of Food Microbiology, 125, 170-175. https://doi.org/10.1016/j.ijfoodmicro.2008.03.041
  17. Hossain, A., & Aditya, G. (2013). Cadmium biosorption potential of shell dust of the fresh water invasive snail Physaacuta. Journal of Environmental Chemical Engineering, 1(3), 574-580. https://doi.org/10.1016/j.jece.2013.06.030
  18. ISIRI (Institute of Standards and Industrial Research of Iran), 2011. Food & feed-maximum limit of heavy metals. Iranian National Standard 12968 (1st revision).
  19. Jain, A.N., Udayashankara, T.H., Lokesh, K.S., & Sudarshan, B.L. (2017). Bioremediation of lead, nickel and copper by metal resistant Bacillus licheniformisisolated from mining site: optimization of operating parameters under laboratory conditions. International Journal of Engineering Research & Technology, 5, 13-32.
  20. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., & Beeregowda, K.N. (2014). Toxicity mechanism and health effects of some heavy metals. Interdiscip Toxicol, 7, 60-72. https://doi.org/10.2478/intox-2014-0009
  21. Kaduková, J., & Virčíková, E. (2005). Comparison of differences between copper bioaccumulation and biosorption. Environment International, 31, 227- 232. https://doi.org/10.1016/j.envint.2004.09.020
  22. Karami, H., Shariatifar, N., Nazmara, S., Moazzen, M., Mahmoodi, B., & Mousavi Khaneghah, A. (2020). The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biological Trace Element Research, 199, 389-400. https://doi.org/10.1007/s12011-020-02130-x
  23. Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., & Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164(7), 701-709. https://doi.org/10.1016/j.resmic.2013.04.004
  24. Kirillova, A.V., Danilushkina, A.A., Irisov, D.S., Bruslik, N.L., Fakhrullin, R.F., Zakharov, Y.A., Bukhmin, V.S., & Yarullina, D.R. (2017). Assessment of resistance and bioremediation ability of Lactobacillusstrains to Lead and Cadmium. International Journal of Microbiology, 2017. https://doi.org/10.1155/2017/9869145
  25. Majlesi, M., Shekarforoush, S.S., Ghaisari, H.R., Nazifi, S., & Sajedianfard, J. (2017). Effect of Bacillus coagulans and Lactobacillus plantarum as probiotic on decreased absorption of cadmium in rat. Journal of Food Hygiene, 6(22), 25-33.
  26. Massoud, R., Khosravi-Darani, K., Sharifan, A., Asadi, G., & Zoghi, A. (2020). Lead and cadmium biosorption from milk by Lactobacillus acidophilus ATCC 4356. Food Science & Nutrition, 8, 5284-5291. https://doi.org/10.1002/fsn3.1825
  27. Mirza Alizadeh, A., Hosseini, H., Mohseni, M., Eskandari, S., Sohrabvandi, S., Hosseini, M.J., Tajabadi‐Ebrahimi, M., Mohammadi‐Kamrood, M., & Nahavandi, S. (2021). Analytic and chemometric assessments of the native probiotic bacteria and inulin effects on bioremediation of lead salts. Journal of the Science of Food and Agriculture101(12), 5142-5153. https://doi.org/10.1002/jsfa.11160
  28. Mrvčić, J., Stanzer, D., Šolić, E. & Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, 28, 2771-2782. https://doi.org/10.1007/s11274-012-1094-2
  29. Özdemir, S., Kýlýnc¸ E., Poli, A., & Nicolaus, B. (2013). Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetic studies. Bioremediation Journal, 17(2), 86-96. https://doi.org/10.1080/10889868.2012.751961
  30. Pakdel, M., Soleimanian-Zad, S., & Akbari-Alavijeh, S. (2019). Screening of Lactic acid bacteria to detect potent biosorbents of lead and cadmium. Food Control100, 144-150. https://doi.org/10.1016/j.foodcont.2018.12.044
  31. Priyalaxmi, R., Murugan, A., Raja, P., & Raj, K.D. (2014). Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. International Journal of Current Microbiology and Applied Sciences, 3(12), 326-335.
  32. Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda, R.R., & Nair, B.U. (2010). Biosorption of cadmium metal ion from simulated wastewaters using Hypneavalentiae biomass: a kinetic and thermodynamic study. Bioresource Technology, 101(5), 1466–1470. https://doi.org/10.1016/j.biortech.2009.08.008
  33. Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M.B., & Tauqeer, H.M. (2013). Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172-179.
  34. Shamim, S. (2018). Biosorption of heavy metals. Biosorption, 2, 21-49. https://doi.org/10.5772/intechopen.72099
  35. Sulaymon, A.H., Mohammed, A.A., & Al-Musawi, T.J. (2013). Competitive biosorptionoflead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 20, 3011-3023. https://doi.org/10.1007/s11356-012-1208-2
  36. Xiao, X., Luo, S., Zeng, G., Wei, W., Wan, Y., Chen, L., Guo, H., Cao, Z., Yang, L., Chen, J., & Xi, Q. (2010). Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresource Technology, 101(6), 1668-1674. https://doi.org/10.1016/j.biortech.2009.09.083
  37. Yang, Y., Zhang, F.S., Li, H.F., & Jiang, R.F. (2009). Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management, 90(2), 1117-1122. https://doi.org/10.1016/j.jenvman.2008.05.004
  38. Zahedifar, M., Moosavi, A.A., Zarei, Z., Shafigh, M., & Karimian, F. (2019). Heavy metals content and distribution in basil (Ocimum basilicum) as influenced by cadmium and different potassium sources. International Journal of Phytoremediation, 21(5), 435-447. https://doi.org/10.1080/15226514.2018.1537253
  39. Zhai, Q., Tian, F., Wang, G., Zhao, J., Liu, X., Cross, K., & Chen, W. (2016). The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Advances, 6(8), 5990-5998. https://doi.org/10.1039/C5RA24843D
  40. Zhai, Q., Xiao, Y., Tian, F., Wang, G., Zhao, J., Liu, X., & Chen, W. (2015). Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances, 5(6), 4648-4658. https://doi.org/10.1039/C4RA12865F
  41. Zoghi, A., Khosravi-Darani, K., & Sohrabvandi, S. (2014). Surface binding of toxins and heavy metals by probiotics. Mini Reviews in Medicinal Chemistry, 14(1), 84-98.

 

CAPTCHA Image