نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه مهندسی بیوسیستم دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

جمع­ کننده خورشیدی تخت یکی از اجزای مهم سامانه­ های جاذب انرژی خورشیدی مانند خشک ­کن ­های خورشیدی است. در این تحقیق در درون جمع‌کننده خورشیدی صفحه تخت از مواد تغییر فاز دهنده به‌صورت لوله ­ای استفاده شد. این لوله­ ها در پنج ردیف پنج تایی به فواصل 5، 10 و 15 سانتی­متر روی ردیف­ ها قرار گرفتند. برای ارزیابی عملکرد حرارتی سه سرعت هوا (m.s-1 5/0، 1 و 2) و برای ارزیابی عملکرد خشک کردن محصول سنجد در نظر گرفته شد. رطوبت این نمونه­ ها برای آسیاب نمودن بایستی به کمتر از 10 درصد می­ رسید. برای مدلسازی سینتیک خشک شدن، پنج مدل ریاضی به داده ­های خشک شدن برازش شد و مدل هندرسون و پاپیس با ضریب همبستگی بیشتر از 97/0 و ریشه میانگین مربعات خطا کمتر از 05/0 به‌عنوان بهترین مدل انتخاب شد. تأثیر سرعت هوا نسبت به جایگاه قرارگیری مواد تغییر فاز دهنده بر خشک شدن بیشتر بود. با بررسی بازده حرارتی جمع‌کننده خورشیدی این نتیجه حاصل شد که بهترین بازده حرارتی در سرعت هوای m.s-1 2 با PCM به فواصل cm 15 به میزان 29/56 درصد اتفاق می­افتد. در این حین بیشترین بازده خشک کردن نیز 72/36% به‌دست آمد. استفاده از مواد تغییر فاز دهنده به همراه سامانه جریان بازگشتی اثر منفی بر کیفیت محصول خشک شده نداشت.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aghbashlo, M., Kianmehr, H., & Samimi-Akhijahani H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of beriberi fruit (Berberidaceae). Energy Conversion Management, 49, 2865–2871. https://doi.org/10.1016/j.enconman.2008.03.009
  2. Akbolat, D., Ertekin, C., Menges, H.O., Guzel, E., & Ekinci, K. (2008). Physical and nutritional properties of oleaster growing in Turkey. Asian Journal of Chemistry, 20, 2358-2366.
  3. Antal, T., Tarek, M., Tarek-Tilistyak, J., & Kerekes, B. (2016). Comparative effects of three different drying methods on drying kinetics and quality of Jerusalem Artichoke (Helianthus tuberosus). Journal of Food Processing and Preservation, 41(3), 2374-2385. https://doi.org/10.1111/jfpp.12971
  4. Atalay, H. (2020). Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage systems for solar energy-assisted drying process. Solar Energy, 198, 124-138. https://doi.org/10.1016/j.solener.2020.01.051
  5. Babar, O., Arora, A.K., Nema, P.K., & Kasara, A. (2021). Effect of PCM assisted flat plate collector solar drying of green chili on retention of bioactive compounds and control of aflatoxins development. Solar Energy, 229, 102-111. https://doi.org/10.1016/j.solener.2021.07.077
  6. Barghi, M.S., Iranmanesh, M., & Samimi-Akhijahani, H. (2022). Thermo-economic analysis of solar drying of Jerusalem artichoke (Helianthus tuberosus) integrated with evacuated tube solar collector and phase change material. Journal of Energy Storage, 52, 104688. https://doi.org/10.1016/j.est.2022.104688
  7. Bhardwaj, A.K., Kumar, R., Chauhan, R., & Kumar, S. (2020). Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region. Thermal Science and Engineering Progress, 20, 100713. https://doi.org/10.1016/j.tsep.2020.100713
  8. Blanco-Cano, L., Soria-Verdugo, A., Garcia-Gutierrez, L.M., & Ruiz-Rivas, U. (2016). Modeling the thin-layer drying process of Granny Smith apples: Application in an indirect solar dryer. Applied Thermal Engineering, 108, 1086-1094. https://doi.org/10.1016/j.applthermaleng.2016.08.001
  9. Boudraa, S. (2020). Impact of microwave-grill-drying (MWGD) on functional properties of berry Russian olive (Elaeagnus angustifolia). Journal of Bioenergy and Food Science, 7(1), 1-13. https://doi.org/10.18067/jbfs.v7i1.275
  10. Chamoli, S., Chauhan, R., Thakur, N.S., & Saini, J.S. (2012). A review of the performance of double pass solar air heater. Renewable Sustainable Energy Reviews, 16(1), 481-492. https://doi.org/10.1016/j.rser.2011.08.012
  11. Dorouzi, M., Mortezapour, H., & Akhavan, H.R. (2018). Tomato slices drying in a desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Solar Energy, 162, 364-371. https://doi.org/10.1016/j.solener.2018.01.025
  12. Ebrahimi, H., Samimi Akhijahani, H., & Salami, P. (2021). Improving the thermal efficiency of a solar dryer using phase change materials at different position in the collector. Solar Energy, 220, 535-551. https://doi.org/10.1016/j.solener.2021.03.054
  13. El Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A., & Guizani, A. (2017). Thermal behavior of indirect solar dryer: Nocturnal usage of solar air with PCM. Journal of Cleaner Production, 148, 37-48. https://doi.org/10.1016/j.jclepro.2017.01.149
  14. Eltawil, M., Mostafa, A., Azam, M., & Alghannam, A.O. (2018). Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy, 116, 594-605. https://doi.org/10.1016/j.renene.2017.10.007
  15. Esakkimuthu, S., Hassabou, A.H., Palaniappan, C., Spinnler, M., Blumenberg, & Velraj, R. (2013). Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy, 88, 144-153. https://doi.org/10.1016/j.solener.2012.11.006
  16. Gertzos, K.P., & Caouris, Y.G. (2007). Experimental and computational study of the developed flow field in a flat plate integrated collector storage (ICS) solar device with recirculation, Exp. Thermal Fluid Science, 31(8), 1133–1145. https://doi.org/10.1016/j.expthermflusci.2006.12.002
  17. Goyal, R.K., Tiwari, G.N., & Garg, H.P. (1998). Effect of thermal storage on the performance of an air collector: a periodic analysis. Energy Conversion Management, 39, 193–202. https://doi.org/10.1016/S0196-8904(96)00226-9
  18. Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M., Shahlari, N., & Hamidpour, R. (2017). Russian olive (Elaeagnus angustifolia): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 7(1), 24-29. https://doi.org/10.1016/j.jtcme.2015.09.004
  19. Iranmanesh, M., Samimi-Akhijahani, H., & Jahromi, M.S.B. (2020). CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy, 145, 1192-1213. https://doi.org/10.1016/j.renene.2019.06.038
  20. Kalogirou, S.A. (2006). Prediction of flat-plate collector performance parameters using artificial neural networks. Solar Energy, 80(3), 248-259. https://doi.org/10.1016/j.solener.2005.03.003
  21. Koca, A., Oztopb, H.F., Koyunc, T., & Varol, Y. (2008). Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 33, 567–574. https://doi.org/10.1016/j.renene.2007.03.012
  22. Motahayyer, M., Arabhosseini, A., & Samimi-Akhijahani, H. (2019). Evaluation of solar cabinet dryer equipped heat exchanger and porous plateIranian Journal of Biosystems Engineering50, 305-318. https://22059/IJBSE.2019.264036.665085
  23. Raj, A.K., Srinivas, M., & Jayaraj, S. (2019). A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering, 146, 910-920. https://doi.org/10.1016/j.applthermaleng.2018.10.055
  24. Rashidi, S., Kashefi, M.H., & Hormozi, F. (2018). Potential applications of inserts in solar thermal energy systems – a review to identify the gaps and frontier challenges. Solar Energy, 171, 929–52. https://doi.org/10.1016/j.solener.2018.07.017
  25. Rashidi, M., Arabhosseini, A., Samimi-Akhijahani, H., & Kermani, A.M. (2021). Acceleration the drying process of oleaster (Elaeagnus angustifolia) using reflectors and desiccant system in a solar drying system. Renewable Energy, 171, 526-541. https://doi.org/10.1016/j.renene.2021.02.094
  26. Sahan, Y., Gocmen, D., Cansev, A., Celik, G., Aydin, E., Dunda, N.A., Dugler, D., Kaplan, H.B., Kilci, A., & Guncer, S. (2015). Chemical and techno-functional properties of fours from peeled and unpeeled oleaster (Elaeagnus angustifolia). Journal of Applied Botany and Food Quality, 88, 34–41. https://doi.org/10.5073/JABFQ.2015.088.007
  27. Salami, P. (2016). Design and construction of the PVT system to increase the energy efficiency of solar flat plate collector. Ph.D. Thesis, University of Tabriz, Tabriz, Iran.
  28. Serale, G., Goia, F., & Perino, M. (2016). Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid. Solar Energy, 134, 429-444. https://doi.org/10.1016/j.solener.2016.04.030
  29. Toğrul, I.T., & Pehlivan, D. (2002). Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216. https://doi.org/10.1016/S0260-8774(02)00065-1
  30. Tyagi, V.V., Panwar, N.L., Rahim, N.A., & Kothari, R. (2012). Review on solar air heating system with and without thermal storage system. Renewable Sustainable Energy Reviews, 16(4), 2289-2303. https://doi.org/10.1016/j.rser.2011.12.005
  31. Wang, Y., Xu, J., Liu, Q., Chen, Y., & Liu, H. (2016). Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Applied Thermal Engineering, 107, 469–78. https://doi.org/10.1016/j.applthermaleng.2016.06.170
  32. Yadav, C.O., & Ramana, P.V. (2020). Experimental investigation of the solar dryer using phase-change material. Renewable Energy and Climate Change, 161, 185-197. https://doi.org/1007/978-981-32-9578-0.17
CAPTCHA Image