نوع مقاله : مقاله پژوهشی فارسی
نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران
2 مؤسسه دولتی ارزیابی ریسک آلمان، برلین، آلمان
چکیده
امروزه بهدلیل وجود نگرانیهای زیستمحیطی و افزایش تقاضای مصرفکنندگان برای محصولات غذایی با کیفیت و ماندگاری بیشتر، استفاده از فیلمها و پوششهای زیست تخریبپذیر مورد توجه بسیاری واقع شدهاند. در این مطالعه، اثر افزودن درصدهای مختلف نانوالیاف سلولز به فیلم مرکب ژلاتین-پلولان و اثر ضدباکتریایی فیلمهای حاوی باکتریوفاژ توسط روش انتشار دیسک بررسی شد. بهعلاوه، اثر ضدباکتریایی فیلم مرکب ژلاتین-پلولان-نانو فیبر سلولز روی گوشت مرغ در طول دوره نگهداری در دو دمای 4 و 12 درجه سانتیگراد علیه باکتری سالمونلا تایفی موریوم مورد مطالعه قرار گرفت. نتایج نشان داد که با افزایش درصد نانوفیبرهای سلولز در فیلم ژلاتین-پلولان ضخامت، حلالیت، تورم، مقاومت کششی، و درصد کشش پذیری فیلمها بهترتیب افزایش، کاهش، افزایش، افزایش، و کاهش یافتند. فیلمهای حاوی باکتریوفاژ روی محیط آگار ناحیه بازدارندگی خوبی داشتند. استفاده از فیلم ضدباکتریایی روی سطح گوشت مرغ در دمای 12 بعد از یک روز منجر به کاهش یک سیکل لگاریتمی شد در حالیکه در دمای 4 در روز هفتم یک سیکل لگاریتمی کاهش را در جمعیت باکتری سالمونلا منجر شد.
کلیدواژهها
موضوعات
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source. |
- Alves, D., Cerqueira, M.A., Pastrana, L.M., & Sillankorva, S. (2020). Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella enteritidis. Food Research International, 128, 108791. https://doi.org/10.1016/j.foodres.2019.108791
- Alves, D., Marques, A., Milho, C., Costa, M.J., Pastrana, L.M., Cerqueira, M.A., & Sillankorva, S.M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 291(16), 121-127. https://doi.org/10.1016/j.ijfoodmicro.2018.11.026
- (2014). Standard Test Method for Tensile Properties of Plastics. In ASTM International (Vol. ASTM D638-14, pp. 1–15). West Conshohocken: PA, USA.
- Besbes, I., Alila, S., & Boufi, S. (2010). Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 84(3), 975–983. https://doi.org/10.1016/j.carbpol.2010.12.052
- Chen, F., & Chi, C. (2022). Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging. International Journal of Biological Macromolecules, 186(1), 405–413. https://doi.org/10.1016/j.ijbiomac.2021.07.025
- García-Anaya, M., R.Sepúlveda, D., ClaudioRios-Velasco, B.Zamudio-Flores, P., I.Sáenz-Mendoza, A., & H.Acosta-Muñiz, C. (2020). The role of food compounds and emerging technologies on phage stability. Innovative Food Science & Emerging Technologies, 64, 102436. https://doi.org/10.1016/j.ifset.2020.102436
- Dicastillo, C.L., Settier-Ramírez, L., Gavara, R., Hernández-Muñoz, P., & Carballo, G.L. (2021). Development of biodegradable films loaded with phages withantilisterial properties. Polymers, 13(3), 327. https://doi.org/10.3390/polym13030327
- Faraji, S., Maghsoudlou, Y., Khomeiri, M., Kashiri, M., & Babaei, A. (2019). In vitro biocontrol of Escherichia coli through the immobilization of its specific lytic bacteriophage on cellulose acetate biodegradable film. Iranian Journal of Medical Microbiology, 12(6), 399-408. https://doi.org/30699/ijmm.12.6.399
- González, A., Gastelú, G., Barrera, G.N., Ribotta, P.D., & Igarzabal, C.I.Á. (2018). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids, 89, 758-764. https://doi.org/10.1016/j.foodhyd.2018.11.051
- Gouvea, D.M., Mendonça, R.C.S., Soto, M.L., & Cruz, R.S. (2015). Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. LWT - Food Science and Technology, 63(1), 85-91. https://doi.org/10.1016/j.lwt.2015.03.014
- Guenther, S., Herzig, O., Fieseler, L., Klumpp, J., & Loessner, M.J. (2012). Biocontrol of Salmonella typhimurium in RTE foods with the virulent bacteriophage FO1-E2. International Journal of Food Microbiology, 154(1-2), 66-77. https://doi.org/10.1016/j.ijfoodmicro.2011.12.023
- Jahed, E., Almasi, H., & Khaledabad, M.A. (2019). Producing and optimizing the properties of chitosan-organic nanofiber biodegradable nanocomposite based containing vulgare subsp. gracile and C. copticum essential oils and its application on the oxidative stability of Canola oil. Iranian Food Science and Technology, 14(5), 907-927. https://doi.org/10.22067/ifstrj.v14i5.71229
- Kamali, S., Yavarmanesh, M., Najafi, M.B.H., & Koocheki, A. (2022a). Development of whey protein concentrate/pullulan composite films containing bacteriophage A511: Functional properties and anti-Listerial effects during storage. Food Packaging and ShelfLife, 33, 100902-100917. https://doi.org/10.1016/j.fpsl.2022.100902
- Kamali, S., Yavarmanesh, M., Najafi, M.B.H., & Koocheki, A. (2022b). Poly (lactic acid) and whey protein/pullulan composite bilayer film containing phage A511 as an anti-Listerial packaging for chicken breast at refrigerated temperatures. LWT- Food Science and Technology, 170, 114085. https://doi.org/10.1016/j.lwt.2022.114085
- Kassab, Z., Aziz, F., Hannache, H., Youcef, H.B., & Achaby, M.E. (2019). Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules, 123, 1248-1256. https://doi.org/10.1016/j.ijbiomac.2018.12.030
- Khodaei, D., Oltroggea, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT- Food Science and Technology, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617
- Kowalczyk, D., MonikaKordowska-Wiater, Karas, M., Zięba, E., MonikaMężyńska, & Wiącek, A.E. (2020). Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 101, 105539. https://doi.org/1016/j.foodhyd.2019.105539
- Leung, V., Szewczyk, A.Y., Chau, J., Hosseini-Doust, Z., Groves, L., Hawsawi, H., Filipe, C.D.M. (2017). Long-term preservation of bacteriophage antimicrobials using sugar glasses. ACS Biomaterials Science and Engineering, 4(11), 3802-3808. https://org/10.1021/acsbiomaterials.7b00468
- Miraghaei, S., & Cheguini, F.K. (2014). Paper presented at the International Conference on Natural Food Hydrocolloids, Mashhad.
- Morcillo-Martín, R., Espinosa, E., Rabasco-Vílchez, L., Sanchez, L.M., Haro, J.., & Rodríguez, A. (2022). Cellulose nanofiber-based aerogels from wheat straw: influence of surface load and lignin content on their properties and dye removal capacity. Biomolecules, 12(2), 32. https://org/10.3390/biom12020232
- Radford, D., Guild, B., Strange, P., Ahmed, R., Lim, L.-T., & Balamurugan, S. (2017). Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly (lactic acid) films. Food Microbiology, 66, 117-128. https://org/10.1016/j.fm.2017.04.015
- Ratna, Aprilia, S., Arahman, N., Bilad, M.R., Suhaimi, H., Munawar, A.A., & Nasution, I.S. (2022). Bio-nanocomposite based on edible gelatin film as active packaging from Clarias gariepinus fish skin with the addition of cellulose nanocrystalline and nanopropolis. Polymers, 14(18), 3738. https://org/10.3390/polym14183738
- Robeson, J., Turra, G., Huber, K., & Borie, C. (2014). A note on stability in food matrices of Salmonella enterica serovar Enteritidis-controlling bacteriophages. Electronic Journal of Biotechnology, 17(4), 189-191. https://doi.org/10.1016/j.ejbt.2014.06.001
- Roy, S., Biswas, D., & Rhim, J.-W. (2022). Gelatin/cellulose nanofiber-based functional nanocomposite film incorporated with zinc oxide nanoparticles. Journal Composites Science, 6(8), 223. https://org/10.3390/jcs6080223
- Roy, S., & Rhim, J.W. (2022). Gelatin/cellulose nanofber‑based functional flms added with mushroom‑mediated sulfur nanoparticles for active packaging applications. Journal of Nanostructure in Chemistry, 12, 979–990. https://org/10.1007/s40097-022-00484-3
- Sezer, B., Tayyarcan, E.K., & Boyaci, I.H. (2022). The use of bacteriophage-based edible coatings for the biocontrol of Salmonella in strawberries. Food Control, 135(101812). https://doi.org/10.1016/j.foodcont.2022.108812
- Shabanpour, B., Kazemi, M., Ojagh, S.M., & Pourashouri, P. (2018). Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International Journal of Biological Macromolecules, 117(1), 742-751. https://doi.org/10.1016/j.ijbiomac.2018.05.038
- Shakeri, G., Hammerl, J.A., Jamshidi, A., Ghazvini, K., Rohde, M., Szabo, I., & Kittler, S. (2021). The lytic siphophage vB_StyS-LmqsSP1 reduces the number of Salmonella enterica serovar Typhimurium isolates on chicken skin. Appllied and Environmental Microbiology, 87(24), e01424-01421. https://org/10.1128/AEM.01424-21
- Trovatti, E., Fernandes, S.C.M., Rubatat, L., Perez, D.S., Freire, C.S.R., Silvestre, A.J.D., & Neto, C.P. (2012). Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Composites Science and Technology, 72(13), 1556–1561. https://doi.org/10.1016/j.compscitech.2012.06.003
- Vonasek, E., Le, P., & Nitin, N. (2014). Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocolloids, 37, 7-13. https://doi.org/10.1016/j.foodhyd.2013.09.017
- Wang, W., Liu, Y., Jia, H., Liu, Y., Zhang, H., He, Z., & Ni1, Y. (2017). Effects of cellulose nanofibers filling and palmitic acid emulsions coating on the physical properties of fish gelatin films. Food Biophysics, 12, 23-32. https://org/10.1007/s11483-016-9459-y
- Weng, S., Lopez, A., Saez-Orviz, S., Marcet, I., García, P., Rendueles, M., & Díaz, M. (2021). Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control, 121, 1-10. https://doi.org/10.1016/j.foodcont.2020.107666
- Yeh, Y., Moura, F.H.., Broek, K.V.D., & Mello, A.S. (2018). Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Science, 139, 44-48. https://org/10.1016/j.meatsci.2018.01.007
- Yang, Y., Xie, B., Liu, Q., Kong, B., & Wang, H. (2020). Fabrication and characterization of a novel polysaccharide based composite nanofiber films with tunable physical properties. Carbohydrate Polymers, 236(15), 116054. https://org/10.1016/j.carbpol.2020.116054
- Yeh, Y., Purushothaman, P., Gupta, N., Ragnone, M., Verma, S.C., & Mello, A.S. (2017). Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Science, 127, 30-34. https://org/10.1016/j.meatsci.2017.01.001
- Zhang, C., Gao, D., Ma, Y., & Zhao, A.X. (2013). Effect of gelatin addition on properties of pullulan films. Journal of Food Science, 78(6), C805-C810. https://org/10.1111/j.1750-3841.2012.02925.x
ارسال نظر در مورد این مقاله