با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی ساری.

چکیده

هدایت حرارتی، یکی از ویژگی‎های مهم آب‎میوه‎ها برای پیش‎بینی ضرایب انتقال جرم وحرارت و همچنین طراحی تجهیزات انتقال جرم و حرارت در صنعت آب‌میوه می‌باشد. شبکه عصبی مصنوعی برای پیش‌بینی هدایت حرارتی آب‌گلابی توسعه داده شد. دما و غلظت متغیرهای ورودی و هدایت حرارتی آب‌میوه متغیر خروجی بودند. مدل بهینه این شبکه شامل دو لایه پنهان با 5 نرون در لایه اول و یک نرون در لایه دوم بود. مدل شبکه مصنوعی توانست مقادیر هدایت حرارتی را بسیار نزدیک به مقادیر اندازه‌گیری‌شده در آزمایش پیش‌بینی کند و در مقایسه با مدل‌های متعارف و رگرسیون چندمتغیره از پایین‌ترین مجذور خطای میانگین (R2=0.999) برخوردار بود. به‌علاوه با به‌کارگیری این روش می‌توان ساختار پنهان لایه‎ها در شبکه‌های عصبی را از طریق آزمون و خطا تعیین کرد. این روش می‌تواند در محاسبات انتقال حرارت در فرآوری انواع آب‌میوه، جایی‎که نیاز به محاسبه هدایت حرارتی برحسب دما و غلظت باشد، به‌خوبی مورداستفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Using artificial neural networks to predict thermal conductivity of pear juice

نویسندگان [English]

  • Zeynab Raftani Amiri
  • Hengameh Darzi Arbabi

Sari Agricultural Sciences and Natural Resources University

چکیده [English]

Thermal conductivity is an important property of juices in the prediction of heat- and mass-transfer coefficients and in the design of heat- and mass-transfer equipment for the fruit juice industry. An artificial neural network (ANN) was developed to predict thermal conductivity of pear juice. Temperature and concentration were input variables. Thermal conductivity of juices was outputs. The optimal ANN model consisted 2 hidden layers with 5 neurons in first hidden layer and the second one has only one neuron. The ANN model was able to predict thermal conductivity values which closely matched the experimental values by providing lowest mean square error (R2=0.999) compared to conventional and multivariable regression models. However this method also improves the problem of determining the hidden structure of the neural network layer by trial and error. It can be incorporated in heat transfer calculations during juices processing where temperature and concentration dependent thermal conductivity values are required.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Thermal conductivity
  • Fruit juices
  • Pear
Curteanu, S., Piuleac, C., Godini, K. & Azaryan, G., 2011, Modeling of electrolysis process in wastewater treatment using different types of neural networks. Chemical Engineering Journal, 172(1), 267-276.
Colin Cameron, A., Windmeijer Frank, A., Gramajo, H.,Cane, D. & Khosla, C., 1997, An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 1790–1792.
Draper, N. & Smith, H., 1998, Applied Regression Analysis (3rd ed.). John Wiley. ISBN 0-471, 17082-17088.
Fernandes, F. & Lona, L. 2005, Neural Network applications in polymerization processes. Brazilian Journal of Chemical Engineering, 22, 323-330.
Heaton, J., 2005, Introduction to Neural Networks with Java, Heaton Research Inc., Chesterfield.
Hussain, M., Shafiur Rahman, M. & Ng, C., 2002, Prediction of pores formation (prosity) in foods during: generic models by the use of hybrid neural network. Journal of Food Engineering, 5, 239-248.
Hussain, M. & Rahman, M., 1999, Thermal conductivity prediction of fruits and vegetables using neural networks. International Journal of Food Properties, 2, 121–138.
Kamali, M. & Mousavi, M., 2008, Analytic, neural network, and hybrid modeling ofsupercritical extraction of -pinene. The Journal of Supercritical Fluids, 47, 168–173.
Lübbert, A. & Simutis, R., 1994, Using measurement data in bioprocess measurement and control, Tibtech 12, 304–311.
Magerramov, M., Abdulagatov, A., Azizov, N. & Abdulagatov, I., 2006, Thermal Conductivity of pear, sweet-cherry, apricot and cherry-plum juices as a function of temperature and concentration. Journal of Food Science, 71(5), 238-244.
Mahmoud, S., Medhat, A., Moustafa, E., Hamdy, A., Seif, E. & Kobrosy, G., 2012, Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alexandria Engineering Journal, 51, 1, 37–43.
Mittal, G. & Zhang, J., 2000, Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Science, 55, 13-24.
Pirdashti, M., Curteanu, S., Hashemi, M., Hassim, M. & Khatami, M., 2013, Artificial neural networks: applications in chemical engineering. Reviews in Chemical Engineering, 29(4), 205-239.
Rai, P., Majumdar, G., Dasgupta, S. & De, S., 2005a, Prediction of the viscosity of clarified fruit juice using artificial neural network: a combined effect of concentration and temperature. Journal of Food Engineering, 68, 527–533.
Rai, P., Majumdar, G., Dasgupta, S. & De, S., 2005b, Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network. Journal of Food Engineering, 71, 273–281.
Sablani, S., Baik, S. & Marcotte, M., 2002, Neural networks for predicting thermal conductivity of bakery products. Journal of Food Engineering, 52, 299–304.
Sablani, S. & Shafiur, M., 2003, Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity. Food Research International, 36, 617–623.
Armstrong, J. & Collopy, N., 1992, Error measures for generalizing about forecasting methods: Empirical comparisons (PDF). International Journal of Forecasting, 8 (1), 69–80.
Shafiur, M., Rashid, M. & Hussain, M., 2012, Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques. Food and bioproducts processing, 90, 333–340.
Wilamowski, B., 2009, Neural Network architectures and learning algorithms. Industrial Electronics IEEE , 3(4), 56-63.
CAPTCHA Image