نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران.

2 گروه اکولوژی آبزیان دریای خزر، ساری، مازندران، ایران.

چکیده

هدف از مطالعه حاضر آبکافت پروتئین اندرونه ماهی قزل‌آلای رنگین‌کمان با استفاده از آنزیم‌های پروتامکس و نئوتراز و مقایسه خواص عملکردی و فعالیت آنتی‌اکسیدانی دو پروتئین آبکافتی تولید شده و همچنین بررسی پروفیل اسیدچرب روغن اندرونه به‌عنوان محصول جانبی فرایند آبکافت می‌باشد. آنزیم پروتامکس نسبت به نئوتراز منجر به تولید پودر پروتئینی، با درجه آبکافت (%92/2 ±76/34) و بازیابی پروتئین (%98/1 ±16/68) بالاتری شد. پروفیل اسیدچرب روغن اندرونه نشان داد که این روغن دارای 34 درصد اسیدچرب تک‌غیراشباع، 49/34 درصد اسیدچرب چندغیراشباع و 4/31 درصد اسیدچرب اشباع است. هر دو پروتئین آبکافتی در تمام pHهای تحت آزمون به‌جز 4=pH از حلالیت بالایی (بیشتر از 90 درصد) برخوردار بودند. از نظر شاخص فعالیت کف‌زایی و پایداری کف، پروتئین آبکافتی با پروتامکس نسبت به پروتئین آبکافتی با نئوتراز عملکرد مطلوبتری داشت تا جایی که در 6=pH توانست شاخص فعالیت کف‌زایی و پایداری کف %31/9 ±13/200 و %64/5 ±6/135 را به‌خود اختصاص دهد. این دو پروتئین دارای ظرفیت نگهداری آب حدود 5/4 میلی‌لیتر در گرم پروتئین آبکافتی بودند (p>0.05). قدرت مهار رادیکال DPPH پروتئین آبکافتی با پروتامکس به‌طور معنی‌داری بیشتر از پروتئین آبکافتی با نئوتراز بود (p

کلیدواژه‌ها

اویسی پور م.، قمی م.ر. 1387. بیوتکنولوژی در تولید فراورده‌های دریایی. انتشارات دانشگاه آزاد اسلامی واحد تنکابن. 104-
اویسی پور م.، عابدیان کناری ع.، معتمدزادگان ع.، نظری ر. 1389. بررسی خواص پروتئین‌های هیدرولیز شده امعاء و احشاء ماهی تون زردباله (Thunnus albacares) با استفاده از آنزیم های تجاری. نشریه پژوهش های علوم و صنایع غذایی ایران، جلد 6، شماره 1، 76-68
بخشان ع.، علیزاده دوغیکلایی ا.، طاهری ع. 1393. بررسی خواص آنتی‌اکسیدانی پروتئین آبکافتی بدست آمده از ضایعات، در فرایند فیله کردن ماهی آزاد (Salmo salar). پاتوبیولوژی مقایسه‌ای، سال یازدهم، شماره 1، 1152-1143
فاطمی ح .، 1378، شیمی مواد غذایی، شرکت سهامی انتشار. چاپ نهم، 78-82
ملااحمدی ن .، فرهوش ر.، شریف ع. 1393. بررسی ساختار اسید چرب روغن ماهی کیلکا. همایش ملی علوم و فناوریهای نوین در صنایع غذایی، دانشگاه آزاد اسلامی، واحد تربت حیدریه، یازدهم دیماه 1393.
Adler-Nissen, J. & Olsen, H. 1979. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. In Food Chemistry (A.Pour-El, ed.) American Chemical Society, Washington, DC.
AOAC, W. H. (2005). Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Arlington, VA, USA.
Bueno-Solano, C., Lopez-Cervantes, J., Campas-Baypoli, O. N., Lauterio-Garcia, R., Adan-Bante, N. P., & Sanchez-Machado, D. I. (2009). Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food chemistry, 112(3), 671-675.
Chobert, J. M., Bertrand-Harb, C., & Nicolas, M. G. (1988). Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. Journal of Agricultural and Food Chemistry, 36(5), 883-892.
Chiang, W. D., Shih, C. J., & Chu, Y. H. (1999). Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chemistry, 65(2), 189-194.
Deeslie, W. D., & Cheryan, M. (1988). Functional properties of soy protein hydrolyzates from a continuous ultrafiltration reactor. Journal of Agricultural and Food Chemistry, 36(1), 26-31.
Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38(3), 674-677.
Dos Santos, S. D. A., Martins, V. G., Salas-Mellado, M., & Prentice, C. (2011). Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food and bioprocess technology, 4(8), 1399-1406.
Elavarasan, K., Naveen Kumar, V., & Shamasundar, B. A. (2014). Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. Journal of Food Processing and Preservation, 38(3), 1207-1214.
Guerard, F., Guimas, L., & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19, 489-498.
Gbogouri, G. A., Linder, M., Fanni, J., & Parmentier, M. (2004). Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Journal of food science, 69(8), C615-C622.
Gimenez, B., Gomez-Estaca, J., Aleman, A., Gomez-Guillen, M. C., & Montero, M. P. (2009). Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 23(3), 585-592.
Halling, P. J. (1981). Protein stabilized foams and emulsions. CRC Critical Reviews in Food Science, 12, 155–203.
Hoyle, N. T., & Merritt, J. O. H. N. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76-79.
Kunte, L. A., Gennadios, A., Cuppett, S. L., Hanna, M. A., & Weller, C. L. (1997). Cast films from soy protein isolates and fractions 1. Cereal Chemistry, 74(2), 115-118.
Kristinsson, H. G. (1998). Reaction kinetics, biochemical and functional properties of salmon muscle proteins hydrolyzed by different alkaline proteases.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), 1317-1327.
Layne, E. (1957). [73] Spectrophotometric and turbidimetric methods for measuring proteins. Methods in enzymology, 3, 447-454.
Linder, M., Fanni, J., & Parmentier, M. (1996). Functional properties of veal bone hydrolysates. Journal of Food Science, 61(4), 712-716.
Martin, A. H., Grolle, K., Bos, M. A., Stuart, M. A. C., & van Vliet, T. (2002). Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability. Journal of Colloid and Interface Science, 254(1), 175-183.
Nalinanon, S., Benjakul, S., & Kishimura, H. (2010). Biochemical properties of pepsinogen and pepsin from the stomach of albacore tuna (Thunnus alalunga). Food Chemistry, 121(1), 49-55.
Nalinanon, S., Benjakul, S., Kishimura, H., & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124(4), 1354-1362.
Oyaiza, M. (1986). Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Journal of nutrition.44, 307–315.
Onodenalore, A. C., & Shahidi, F. (1996). Protein dispersions and hydrolysates from shark (Isurus oxyrinchus). Journal of Aquatic Food Product Technology, 5(4), 43-59.
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238-242.
Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using alcalase and protamex. International Aquatic Research, 2, 87-95.
Pearson, A. M. (1983). Soy proteins. In B. J. F. Hudson (Ed.), Developments in food proteins-2(pp. 67–108). Essex, England: Applied Science Publishers
Pak, C. S. 2005. Stability and quality of fish oil during typical domestic application. Final Project. Wonsan University of fisheries Kangwon Province, DPR of Korea.
Pacheco-Aguilar, R., Mazorra-Manzano, M. A., & Ramirez-Suarez, J. C. (2008). Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry, 109(4), 782-789.
Robinson, H. W., & Hogden, C. G. (1940). The biuret reaction in the determination of serum proteins. 1. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. Journal of Biological Chemistry, 135, 707-725.
Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega‐3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459.
Rodriguez-Ambriz, S. L., Martinez-Ayala, A. L., Millan, F., & Davila-Ortiz, G. (2005). Composition and functional properties of Lupinus campestris protein isolates. Plant Foods for Human Nutrition, 60(3), 99-107.
Ren, J., Wang, H., Zhao, M., Cui, C., & Hu, X. (2010). Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates. Czech Journal of. Food Science. Vol, 28(6), 475-484.
Spinelli, J., Koury, B., & Miller, R. (1972). Approaches to the utilization of fish for the preparation of protein isolates enzymic modifications of myofibrillar fish proteins. Journal of Food Science, 37(4), 604-608.
Sathe, S. K., & Salunkhe, D. K. (1981). Functional properties of the Great Northern bean (Phaseolus vulgaris L.) proteins: Emulsion, foaming, viscosity, and gelation properties. Journal of Food Science, 46(1), 71-81.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945-948.
Shahidi, F., Han, X. Q., & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food chemistry, 53(3), 285-293.
Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2), 187.
Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2012). Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5(1), 73-79.
Thanonkaew, A., Benjakul, S., & Visessanguan, W. (2006). Chemical composition and thermal property of cuttlefish (Sepia pharaonis) muscle. Journal of Food Composition and Analysis, 19(2), 127-133.
Taheri, A., Anvar, S. A. A., Ahari, H., & Fogliano, V. (2012). Comparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences, 12(1), 154-169.
Venugopal, V., & Shahidi, F. (1994). Thermostable water dispersions of myofibrillar proteins from Atlantic mackerel (Scomber scombrus). Journal of food science, 59(2), 265-268.
Wilding, P., Lillford, P. J., & Regenstein, J. M. (1984). Functional properties of proteins in foods. Journal of Chemical Technology and Biotechnology. Biotechnology, 34(3), 182-189.
Wilde, P. J., & Clark, D. C. (1996). The competitive displacement of β-lactoglobulin by Tween 20 from oil-water and air-water interfaces. Journal of colloid and interface science, 155(1), 48-54.
Wasswa, J., Tang, J., Gu, X. H., & Yuan, X. Q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 104(4), 1698-1704.
Yen, G. C., & Wu, J. Y. (1999). Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chemistry, 65(3), 375-37.
CAPTCHA Image