نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه زابل

چکیده

در این تحقیق سعی گردید تا با استفاده از بیوپلیمرهای کازئینات سدیم و متیل سلولز فیلم مناسب جهت کنترل رشد باکتری‌ لیستریا اینوکوا 10799IBRC-M تهیه گردد. بدین منظور باکتری لاکتوباسیلوس ‌کازئی 1608 PTCCبه تعداد CFU/cm2106 مستقیما به محلول سازنده فیلم‌های کازئینات سدیم و متیل سلولز افزوده، سپس در دمای 25 درجه سانتی‌گراد و مدت 24 ساعت خشک شدند. تاثیر باکتری لاکتوباسیلوس ‌کازئی 1608PTCC بر خصوصیات فیلم شامل نفوذپذیری بخار آب، کدورت و مکانیکی ارزیابی شد. همچنین اثر مهارکنندگی فیلم‌ها بر باکتری‌های لیستریا اینوکوا 10799IBRC-M و نرخ زنده‌مانی لاکتوباسیلوس ‌کازئی 1608PTCC طی 12 روز (در دمای 5 درجه سانتی‌گراد) بررسی گردید. ارزیابی‌های آزمایشگاهی نشان داد حضور باکتری اسید لاکتیک در فیلم‌ها به‌طور معنی‌داری سبب افزایش شفافیت، نفوذپذیری بخارآب و مقدار کشش‌پذیری و همچنین کاهش معنی‌دار مقاومت کششی و مدول الاستیسیته شد. نرخ زنده‌مانی لاکتوباسیلوس ‌کازئی 1608PTCC در فیلم سدیم کازئینات به‌طور معنی‌داری بالاتر بود. بیشترین و کمترین مقدار نرخ بازداری لیستریا اینوکوا 10799IBRC-M در فیلم متیل سلولز به‌ترتیب در روزهای چهارم (86%) و دوازدهم (27 %) مشاهده گردید (05/0>p) . اما از روز هشتم به بعد فیلم زیست‌فعال کازئینات سدیم توانایی مهار بالاتری نشان داد. نتایج این تحقیق نشان داد نوع پلیمر نقش کلیدی در خواص ضد باکتریایی و فیزیکی فیلم زیست فعال دارد.

کلیدواژه‌ها

Alegre, I., Viñas, I., Usall, J., Anguera, M. & Abadias, M., 2011, Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food Microbiology, 28, 59-66.
ASTM, 2001, Standard test method for tensile properties of thin plastic sheeting. Standard D882 ASTM, Annual book of ASTM, pp. 162-170.
Aminabhavi, T. M., Balundgi, R. H., & Cassidy, P. E., 2008, A review on biodegradable plastics. Polymer-Plastics Technology and Engineering, 29, 235-262.
Banada, P. P., Guo, S., Bayraktar, B., Bae, E., Rajwa, B., Robinson, J. P., & Bhunia, A. K. )2007(. Optical forward scattering for detection of Listeria monocytogenes and other Listeria species. Biosensors and Bioelectronics, 22(8), 1664-1671.
Barmpalia, I. M., Koutsoumanis, K. P., Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C. & Sofos, J. N., 2005, Effect of antimicrobials as ingredients of pork bologna for Listeria monocytogenes control during storage at 4 or 10 °C. Food Microbiology, 22, 205−211.
Beristain-Bauza, S. C., Mani-Lopez, E., Palou, E., & Lopez-Malo, A., 2016, Antimicrobial activity and physical properties of protein films added with cell free supernatant of Lactobacillus rhamnosus. Food Control, 62, 44–51.
Bevilacqua, A., Sinigaglia, M., & Corbo, M. R., 2010, an acid/alkaline stress and theaddition of amino acids induce a prolonged viability of Lactobacillus plantarumloaded into alginate gel. International Journal of Food Microbiology, 142(1-2), 242-246.
Bourtoom, T., 2008, Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248.
Broumand, A., Emam-Djomeh, Z., Manouchehr, H., & Razavi, S, H., 2011, Antimicrobial, water vapour permeability, mechanical and thermal properties of casein based Zataraia multiflora Boiss. Extract containing film. LWT - Food science and Technology, 44, 2316-2323.
Castro, K. A.D.F., Moura, N. M.M., Fernandes,A., Faustino, M. A. F., Simoes, M. M.Q., Cavaleiro, J. A.S., Nakagaki, S., Almeida, A., Cunha, A., Silvestre, A. J.D., Freire, C. S.R., Pinto, R. J.B., & Neves, M. d. G. P.M.S., 2017, Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dyes and Pigments, 137, 265-276.
Chambi, H., & Grosso, C, 2006, Edible films produced with gelatin and casein cross linked with transglutaminase. Food Research International, 39, 458–466.
Corcoran, B. M., Stanton,C., Fitzgerald,G. F. & Ross,R. P., 2007, Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology, 153, 291–299.
Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., & Alganer, K., 2013, Comparative study of processing methods for starch/gelatin films.Carbohydrate Polymers, 95(2), 681-689.
Falguera, V., Quintero, J. P., Jimenez, A., Muñoz, J. A., & Ibarz, A., 2011, Edible films and coatings: structures, active functions and trends in their use. Trends in Food science & Technology, 22(6), 292-303.
Galotto, M. J., Guarda, A., & Lopez de Dicastillo, C., 2015, Antimicrobial active polymers in food packaging. In G. Cirillo, F. Iemma, & U. G. Spirizzi (Eds.), Functional polymers in food science (1st ed.). New Jersey, USA: scrivener Publishing Editorial.
Galvez, A., Abriouel, H., Lopez, R. L., & Ben Omar, N., 2007, Bacteriocin-basedstrategies for food biopreservation. International Journal of Food Microbiology, 120(1-2), 51-70.
Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G. & Koutsoumanis, K. P., 2010, Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43, 2402–2408.
Jayasena, D. D., & Jo, C., 2013, Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food science & Technology, 34, 96-108.
Kanmani, P., & Lim, S. T., 2013, Development and characterization of novel probiotic residing pullulan/starch edible films. Food Chemistry, 141, 1041–1049.
Kristo, E., Koutsoumanis, K. P. & Biliaderis, C. G., 2008, Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22, 373-386.
Leonard, L., Degraeve, P., Gharsallaoui, A., Saurel, R. & Oulahal, N., 2014, Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells. Food Control, 37, 200-209.
Martinez, R. C. R. & De Martinis, E. C. P., 2005, Evaluation of bacteriocin-producing Lactobacillus sakei 1 against Listeria monocytogenes 1/2a growth and haemolytic activity. Brazilian Journal of Microbiology, 36, 83-87.
Nú nez-Flores, R., Gimenez, B., Fernandez-Martn, F., Lopez-Caballero, M. E., Montero, M. P., & Gomez-Guillen, M. C., 2012, Role of lignosulphonate in properties of fish gelatin films. Food Hydrocolloids, 27(1), 60-71.
Odila Pereira, J., Soares, J., Sousa, S., Raquel Madureira, Ana. Gomes, Ana. & Pintado, M., 2016, Edible films as carrier for lactic acid bacteria. LWT - Food science and Technology, 73, 543-550.
Randazzo, W., Jimenez-Belenguer, A., Settanni, L., Perdones, A., Moschetti, M., Palazzolo, E., Guarrasi, V., Vargas, M., Antonietta German, M., & Moschetti, G., 2016, Antilisterial effect of citrus essential oils and their performance in edible film formulations. Food Control, 59, 750-758.
Sanchez-Gonzalez, L., Quintero Saavedra, J. I. & Chiralt, A., 2013, Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocolloids, 33, 92-98.
Sanchez-Gonzalez, L., Quintero Saavedra, J. I. & Chiralt, A., 2014, Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Control, 35, 200-206.
Seyedi, S., Koocheki, A., Mohebbi, M., & Zahedi, Y., 2014, Lepidium perfoliatum seed gum: A new source of carbohydrate tomake a biodegradable film.Carbohydrate Polymers, 101, 349– 358.
Schou, M., Longares, A., Montesinos-Herrero, C., Monahan, F. J., O’Riordan, D., & O’sullivan, M., 2004, Properties of edible sodium caseinate film and their application as food wrapping. LWT- food science and technology, 38, 605-610.
Vescovo, M., Scolari, G., & Zacconi, C., 2006, Inhibition of Listeria innocua growth by antimicrobial-producing lactic acid cultures in vacuum-packed cold-smoked salmon. Food Microbiology, 23, 686-693.
Zheng, L. Y., & Zhu, J. F., 2003, Study on antimicrobial activity of chitosan with different molecular weight. Carbohydrate Polymers, 54(4), 527–530.