نوع مقاله : مقاله پژوهشی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 گروه محیط زیست، دانشگاه کالیاری، خیابان بیمارستان 72، کالیاری 09124، ایتالیا.

چکیده

کورکومین ماده‌ای هیدروفوب است که به علت ناپایداری در شرایط فیزیولوژیکی و جذب پایین، به سرعت از بدن دفع شده و دسترسی زیستی پایینی دارد. در این پژوهش به‌منظور تثبیت ساختار فسفولیپید، حفاظت از لیپوزوم‌ها و بهبود پایداری کورکومین در شرایط روده‌ای از فرمولاسیون‌های حاوی فسفولیپید (S75 و P90G)، سدیم هیالورونات و اودراجیت (S100 و L100) استفاده شد. نتایج نشان داد که P90G در مقایسه با S75 لیپوزوم-هایی بسیار کوچک (10±130 نانومتر) با شاخص پراکندگی پایین (03/0±17/0) ایجاد کرد در حالی که افزودن هیالورونان و اودراجیت به افزایش معنی-دار این مقادیر منجر گردید. لیپوزوم‌های حاوی اودراجیت، دارای اشکال کروی و بیضی شکل چند لایه یا تک لایه بزرگ با میانگین اندازه 400-300 نانومتر بودند، طوری‌که برخی از آنها، تعدادی وزیکول کوچک‌تر را در درون خود محبوس کرده بودند. لیپوزوم‌های تولید شده با هر دو نوع اودراجیت، بازده درون‌پوشانی بالا (بیش از 80 درصد) بلافاصله پس از تولید داشتند، به علاوه در این نمونه‌ها حین نگهداری کاهش معنی‌داری نیز مشاهده نگردید. لیپوزوم‌های حاوی اودراجیت S100 دارای اندازه کوچک‌تری (31±287 نانومتر) در مقایسه با نمونه حاوی اودراجیت L100 (33±407 نانومتر) بلافاصله پس از تولید بوده، به علاوه پایداری خود را حین نگهداری حفظ کرد. تثبیت لیپوزوم‌ها در شبکه پلیمری هیالورونان- اودراجیت منجر به افزایش پایداری آنها در برابر شرایط سخت گوارشی مانند قدرت یونی و تغییرات pH شد؛ بدین ترتیب لیپوزوم‌های حاوی اودراجیت S100 با داشتن فاکتورهای ابعادی مناسب و پایداری مطلوب جهت بارگذاری و انتقال مقادیر بالای کورکومین انتخاب گردید.

کلیدواژه‌ها

Abd-Elbary, A., El-laithy, H.M. & Tadros, M.I., 2008, Sucrose stearate-based proniosome derived niosomes for the nebulisable delivery of cromolyn sodium, International Journal of Pharmaceutics, 357, 189-198.
Aboelwafa, A.A., El-Setouhy, D.A. & Elmeshad, A.N., 2010, Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design, AAPS PharmSciTech, 11(4), 1591-1602.
Barea, M.J., Jenkins, M.J., Gaber, M.H. & Bridson, R.H. 2010. Evaluation of liposomes coated with a pH responsive polymer, International Journal of Pharmaceutics, 402 (1-2), 89-94.
Catalan-Latorre, A., Ravaghi, M., Manca, M.L., Caddeo, C., Marongiu, F., Ennas, G., Escribano-Ferrer, E., Peris, J.E., Diez-Sales, O., Fadda, A.M. & Manconi, M., 2016. Freeze-dried eudragit-hyaluronan multicompartment liposomes, European Journal of Pharmaceutics and Biopharmaceutics, 107, 49-55.
Chen-yu, G., Chun-fen, Y., Qi-lu, L., Qi, T., Yan-wei, X., Wei-na, L. & Guang-xi, Z., 2012, Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery, International Journal of Pharmaceutics, 430, 292-298.
Ghanbarzadeh, B., Pezeshky, A., Hamishehkar, H., & Moghadam, M., 2016, Vitamin A palimitate-loaded nanoliposomes: study of particle size, zeta potential, efficiency and stability of encapsulation, Iranian Food Science and Technology Research Journal, 12(2), 261-275.
Hatcher, H., Planalp, R., Cho, J., Torti, F.M. &Torti, S.V., 2008, Curcumin: from ancient medicine to current clinical trials, Cellular and Molecular Life Sciences, 65, 1631-1652.
Hosny, K.M., Ahmed, O.A., & Al-Abdali, R.T. 2013. Enteric-coated alendronate sodium nanoliposomes: a novel formula to overcome barriers for the treatment of osteoporosis, Expert Opinion on Drug Delivery, 10, 741–746
Hosseini, F., Habibi Najafi M. B., Hashemi, M., Blourian, S., & Zaman Zade, F., 2011, Evaluation of antimicrobial activities and color strength of curcumin in macaroni, Iranian Food Science and Technology Research Journal, 7(1): 33-41.
Karn, P.R, Vanić, Z., Pepić, I., & Skalko-Basnet, N. 2011. Mucoadhesive liposomal delivery systems: The choice of coating material, Drug Development and Industrial Pharmacy, 37(4), 482-488.
Li, C., Zhang, Y., Su, T., Feng, L., Long, Y. & Chen, Z., 2012, Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin, International Journal of Nanomedicine, 7, 5995-6002.
Li, J., Lee, I.W., Shin, G.H., Chen, X. & Park, H.J., 2015, Curcumin-Eudragit E PO solid dispersion: a simple and potent method to solve the problems of curcumin, European Journal of Pharmaceutics and Biopharmaceutics, 94, 322-332.
Liu, W., Liu, W., Ye, A., Peng, S., Wei, F., Liu, C. & Han, J., 2016, Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate, Food Chemistry, 196,396–404.
Liu, W., Ye, A., Liu, W., Liu, C., Han, J. & Singh, H., 2015, Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion, Food Chemistry, 175, 16-24.
Maheshwari, R.K., Singh, A.K., Gaddipati, J. & Srimal, R.C., 2006, multiple biological activities of curcumin: a short review, Life Science, 78, 2081-2087.
Manca, M.L., Castangia, I., Zaru, M., Nacher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A.M. & Manconi, M., 2015, Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring, Biomaterials, 71, 100-109.
Gurrapu, A., Jukanti, R., Bobbala, S.R., Kanuganti, S. & Jeevana, J. B., 2012, Improved oral delivery of valsartan from maltodextrin based proniosome powders, Advanced Powder Technology, 23, 583-590.
Mohammad Hassani, Z., Ghanbarzadeh, B., Hamishehkar, H., & Rezayi Mokarram, R., 2014, Gamma oryzanol-bearing nanoliposomes: study of FTIR spectrophotometry, vesicle size, ζ-potential, physical stability and steady rheology, Iranian Food Science and Technology Research Journal, 10(1): 62-75.
Muzzalupo, R., Tavano, L. & La Mesa, C., 2013, Alkyl glucopyranoside based niosomes containing methotrexate for pharmaceutical applications: evaluation of physicochemical and biological properties, International Journal of Pharmaceutics, 458, 224- 229.
Patra, D., Ahmadieh, D. & Aridi, R., 2013, Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome, Colloids and Surfaces B. Biointerfaces, 110, 296-304.
Rowland, R.N. & Woodley, J.F., 1980, The stability of liposomes in vitro to pH, bile salts and pancreatic lipase, Biochimica Biophysica Acta, 620, 400-409.
Sezgin-Bayindir, Z., Antep, M.N. & Yuksel, N., 2015, Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water soluble drug, AAPS PharmSciTech, 16(1), 108-117.
Tarcha, P. J., 1990, polymers for controlled drug delivery, CRC press, USA, 58-60.
Tavano, L., de Cindio, B., Picci, N., Ioele, G. & Muzzalupo, R., 2014, Drug compartmentalization as strategy to improve the physicochemical properties of diclofenac sodium loaded niosomes for topical applications, Biomedical Microdevices, 16, 851-858.
Tayyem, R.F., Heath, D.D., Al-Delaimy, W.K. & Rock, C.L., 2006, Curcumin content of turmeric and curry powders, Nutrition and Cancer, 55 , 126-131.
Tizchang, S., Sowti khiabani, M., & Rezaie mokaram, R., 2015, Evaluation of factors affecting at preparation of nanoliposomes containing nisin using Response surface methodology, Iranian Food Science and Technology Research Journal, 11(2), 171-180.
CAPTCHA Image