با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد ورامین- پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.

2 مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران.

3 پژوهشکده زیست فناوری، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران.

چکیده

هدف از این تحقیق بررسی اثر افزودن گلوکز اکسیداز تثبیت شده بر روی نانوذرات مغناطیسی کیتوزان بر مقدار اسیدهای آلی (اسید لاکتیک و اسید استیک)، زنده‌مانی باکتری‌های پروبیوتیک و ویژگی­های حسی ماست نوشیدنی پروبیوتیک بود. مقادیر مختلف (صفر، 250، 500، 750 و1000 میلی­گرم بر کیلوگرم) گلوکز اکسیداز آزاد و تثبیت شده در ماست نوشیدنی پروبیوتیک استفاده شد. نمونه­ها به مدت سه هفته در دمای 4 درجه سلسیوس نگهداری شدند. طی زمان نگهداری مقدار اسید استیک، جمعیت لاکتوباسیلوس اسیدوفیلوس و بیفیدوباکتریوم لاکتیس به‌طور معنی­داری کاهش یافت ولی مقدار اسید لاکتیک افزایش معنی­داری داشت (05/0>p). افزودن آنزیم باعث افزایش زنده­مانی باکتری­های پروبیوتیک در نمونه­های تست در مقایسه با نمونه شاهد (فاقد آنزیم) شد. زنده­مانی بیفیدوباکتریوم لاکتیس در نمونه­های حاوی سطوح بالای آنزیم (750 و 1000 میلی‌گرم بر کیلوگرم) کمتر از سایر سطوح بود. نمونه­های حاوی 500 میلی‌گرم برکیلوگرم آنزیم آزاد و تثبیت شده بالاترین تعداد بیفیدوباکتریوم لاکتیس (log CFU/mL88/7) را داشتند و مقدار اسید استیک در این نمونه­ها بیشتر بود (به‌ترتیب 82/0 و g/L 87/0). تفاوت معنی­داری در ویژگی­های حسی نمونه­ها مشاهده نشد. بنابراین افزودن گلوکزاکسیداز تثبیت شده بر روی نانو ذرات مغناطیسی کیتوزان می­تواند با کاهش فشار اکسیداتیو شرایط مطلوب­تری را برای بقای باکتری‌های پروبیوتیک در ماست نوشیدنی پدید آورد و پذیرش کلی حسی محصول را حفظ نماید ضمن اینکه از نظر اقتصادی نیز مقرون به صرفه است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the organic acids, microbial and sensory properties of probiotic drinking yogurt containing glucose oxidase immobilized on magnetic chitosan nanoparticles

نویسندگان [English]

  • Maryam Ein Ali Afjeh 1
  • Rezvan Pourahmad 1
  • Behrouz Akbari Adergani 2
  • Mehrdad Azin 3

1 Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.

2 Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.

3 Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran.

چکیده [English]

Introduction: The aim of this study was to investigate the effect of immobilized glucose oxidase on magnetic chitosan nanoparticles on the content of organic acids (lactic acid and acetic acid), viability of probiotic bacteria and sensory properties of probiotic drinking yogurt.
 Materials and methods: Different concentrations (0, 250, 500, 750 and 1000 mg/kg) of free and immobilized glucose oxidase were used in probiotic drinking yogurt. The samples were stored at 4˚C for three weeks.
 Results and discussion: During storage, the content of acetic acid, counts of Lactobacillus acidophilus and Bifidobacterium lactis decreased and the content of lactic acid increased significantly (p<0.05). Addition of enzyme increased the viability of probiotic bacteria in test samples as compared to control sample (without enzyme). The viability of Bifidobacterium lactis in the samples containing high levels of enzyme (750 and 1000 mg/kg) was higher than other levels. The samples containing 500 mg/kg of free and immobilized enzyme had the highest count of Bifidobacterium lactis (7.88 log CFU/mL) and the amount of acetic acid in these samples (0.82 and 0.87 g/L, respectively) was more than other samples. There was no significant difference between the samples in regards to sensory properties. Therefore, addition of glucose oxidase immobilized on magnetic chitosan nanoparticles can decrease oxidative pressure and create suitable condition for the viability of probiotic bacteria in drinking yogurt and maintain overall acceptability. Moreover, it is economically feasible.

کلیدواژه‌ها [English]

  • Chitosan
  • Immobilized glucose oxidae
  • Magnetic nanoparticles
  • Organic acids
  • Probiotic drinking yogurt
  • Sensory quality
ارباب سلیمانی، ن.، کسری کرمانشاهی، ر.، یخچالی، ب.، 1395، تأثیر پری‌بیوتیک کیتوزان بر رشد و خاصیت ضد میکروبی لاکتوباسیلوس‌های پروبیوتیکی. مجله میکروب‌شناسی پزشکی ایران، 10، 43-35.
موسسه استاندارد و تحقیقات صنعتی ایران، 1387، روش‌های آزمون حسی، استاندارد ملی ایران شماره 3442.
Allgeyer, L.C., Miller, M.J., Lee, S.Y., 2010, Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93, 4471–4479.
Batista, A.L.D., Silva, R., Cappato, L.P. Almada, C.N., Garcia, R.K.A., Silva, M.C., Raices, R.S.L., Arellano, D.B., SantAna, A.S., Conte Junior, C.A., Freitas, M.Q., Cruz, A.G., 2015, Quality parameters of probiotic yogurt added of glucose oxidase compared to commercial products through microbiological, physical-chemical and metabolic activity analysis. Food Research International Journal, 77(3), 627-635
Behrens, J. H., Barcellos, M. N., Frewer, L. J., Nunes, T. P., G. M. Franco, B. D., Destro, M. T., Landgraf, M., 2010, Consumer purchase habits and views on food safety: A Brazilian study. Food Control, 21, 963–969.
Blandino A., Macias M., Cantero D., 2001, Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 36, 601- 606.
Cruz, A. G., Faria , J. A. F., Walter, E. H. M., Andrade, R. R., Cavalcanti, R. N., Oliveira, C. A. F., Granato, D., 2010, Optimization of the processing of probiotic yoghurt added with glucose oxidase using the response surface methodology. Journal of Dairy Science, 93, 1058–1069.
Cruz, A. G., Faria , J. A. F., Faria, G. A. F., Oliveira, C. A. F., Cavalcani, R. N., Bona, E., Bolini, H. A. M., Silva, M. A. A. P. D., 2011, Consumer acceptability and purchase intent of probiotic yogurt added glucose oxidase using sensometrics, artificial neural networks and logistic regression. International Journal of Dairy Technology, 64(4), 549- 556.
Cruz , A. G., Castro, W. F., Faria , J. A. F., Lollo, P. C. B., Amaya-Farfan , J., Freitas , M. Q., Rodrigues, D., Oliveira, C. A. F., Godoy, H. T., 2012, Probiotic yogurts manufactured with increased glucose oxidase levels: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. Journal of Dairy Science, 95, 2261–2269
Dave, R. I., Shah, N.P., 1997, Effectiveness of acid ascorbic as an oxygen scavenger in improving viability of probiotic bacteria in yogurts made with commercial starters cultures. International Dairy Journal, 7, 435-443.
Dave, R. I., Shah, N.P., 1998, Ingredient supplementation effects on viability of probiotic bacteria in yogurt. Journal of Dairy Science, 81, 2804–2816.
Denkbas. E. B., Kilicay, Birlikseven, C., Ozturk, E., 2002, Reactive and Functional Polymers, 50, 225-232.
Donkor, O. N., Henriksson, A.,Vasiljevic, T., Shah, N. P., 2005, Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. Journal of Food Science, 70, M375–M381.
Ghadi, A., Tabandeh, F., Mahjoub, S., Mohsenifar, A., Talebnia Roshan, F., Shafiee Alavije, R., 2015, Fabrication and characterization of core- shell magnetic chitosan nanoparticles as a novel carrier for immoblization of Burkholderia cepacia lipase. Journal of oleo Science, 64 (4), 423- 430.
Gonzalez-Gonzalez, C.R., Tuohy, K.M., Jauregi, P., 2011, Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACEinhibitory activity. International Dairy Journal, 21, 615-622.
Hetch, H. J., Kalisz, H, M., Hendle, J., Schmid, R. D., 1993, Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. Journal of Molecular Biology, 229, 153- 172.
Horiuchi, H., Inoue, N., Liu, E., Fukui, M., Sasaki, Y., Sasaki, T., 2009, A method for manufacturing superior set yogurt under reduced oxygen conditions. Journal of Dairy Science, 92(9), 4112-4121.
Hussain, I., Rahman, A.U., Atkinson, N., 2009, Quality comparison of probiotic and natural yogurt. Pakistan Journal of Nutrition, 8, 9-12.
Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., Malhotra, B.D., 2008, Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron, 24, 676-683.
Kim, J., Grate, J.W., Wang, P., 2006, Nanostructures for enzyme stabilization. Chemical Engineering Journal, 61, 1017-26.
La Torre, L., Tamime, A.Y., Muir, D.D., 2003, Rheology and sensory profiling of set-type fermented milks made with different commercial probiotic and yoghurt starter cultures. International Journal of Dairy Technology, 56,163–170
Liu, X., Lei, L., Li, Y., Zhu, H., Cui, Y., Hu, H., 2011, Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase. Biochemical Engineering Journal, 56, 142-49.
Liu, L.H., Zhao, G., He, B., Chen, L., Huang, L., 2012, Immobilization of pectinase and lipase on macroporous resin coated with chitosan for treatment of whitewater from papermaking. Bioresource Technology, 123, 616-619.
Miller, C. W., Nguyen, M. H., Rooney, M., Kailasapathy, K., 2003, the control of dissolved oxygen content in probiotic yoghurts by alternative packaging materials. Packaging Technology and Science, 16, 61–67.
Mohammadi, R., Sohrabvandi, S. and Mortazavian, A.M., 2012, the starter culture characteristics of probiotic microorganisms in fermented milk. Engineering in Life Sciences, 12 (4), 399-409.
Ninomiya, K., Matsuda, K., Kawahata, T., Kanaya, T., Kohno, M., Katakura, Y., Asada, M., Shioya, S., 2009, Effect of the CO2 concentration on the growth and exopolysaccharide production of Bifidobacteriumlongum cultived under aerobic conditions. Journal of Bioscience and Bioengineering, 5, 535–537.
Ravi Kumar, M.N.V., 2000, A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27.
Ruiz, L., Ruas-Madiedo, P., Guiemonde, M., Reyes-Gavilan, C.G., Margolles, A., Sanchez, B., 2011, How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 6, 307–318.
Sabooni, P., Pourahmad, R., Mahdavi Adeli, H.R., 2018, Improvement of Viability of Probiotic Bacteria, Organoleptic Qualities and Physical Characteristics in Kefir Using Transglutaminase and Xanthan. Acta Scientiarum Polonorum Technologia Alimentaria, 17(2), 141–148.
Settachaimongkon, S., Nout, R.M.J., Antunes Fernandes, E.C., van Hooijdonk, T.C.M., Zwietering, M.H., Smid, E.J., van Valenberg, H.J.F., 2014, The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt. International Dairy Journal, 38, 1–10
Serra, M., Trujillo, A.J., Guamis, B., Ferragut, V., 2009, Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. International Dairy Journal, 19(2), 100-106.
Shakirova, L., L. Auzina, P. Zikmanis, M. Gavare, and M. Grube., 2010, Influence of growth conditions on hydrophobicity of Lactobacillusacidophilus and Bifidobacterium lactis cells and characteristics by FT-IS spectra. Spectroscopy International Journal, 24, 251–255.
Sheldon, R.A., 2007, Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8-9), 1289 307.
Shim, S.M.,Seo, S.H., Lee, Y., Gui-Im, M, Min-Shik, K., Park, J.H., 2011, Consumers’ knowledge and safety perceptions of food additives: Evaluation on the effectiveness of transmitting information on preservatives. Food Control, 22, 1054–1060.
Talwalkar, A., Kailasapathy, K., 2004, Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillu sacidophilus, Bifidobacterium spp. and Lactobacillus casei complex from commercial yogurts. International Dairy Journal, 14, 143-149.
Tamime, A.Y., Robinson, R.K., 2007, Yoghurt science and technology, CRC Press, Boca Raton,
pp.13-161.
Tang, H., Zhang, P., Kieft, T., Ryon, S., Baker, S., Wiesman, W., Rogelji, S., 2010, Antibacterial action of anoval functionalized chitosan arginine against gram-negative bacteria. Acta Biomaterialia, 6, 2562- 2571.
Venica, C., Perotti, M., Bergamini, C., 2014, Organic acids profiles in lactose- hydrolyzed yogurt with different matrix composition. Dairy Science and Technology, 94, 561-580.
Vikartovska, D., Pätoprsty, V., Lacik, I., Gemeiner, P., 2007, Improvement of the stability of glucose oxidase via encapsulation in sodium alginate- cellulose sulfate- poly (methylene- co- guanidine) capsules. Enzyme Microb Technology, 41, 748-755
CAPTCHA Image