نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه آموزش عالی جهاد دانشگاهی کاشمر

2 پژوهشکده علوم و فناوری مواد غذایی

3 پژوهشکده علوم و فناوری غذایی

چکیده

تحقیقات نشان داده است که برخی پپتیدهای زیست فعال با بازدارندگی آنزیم مبدل آنژیوتنسین (ACE)، باعث حفظ انعطاف‌پذیری دیواره رگ‌ها و جلوگیری از افزایش فشار خون می‌شوند. پروتئین سویا به‌عنوان یک منبع این‌گونه پپتیدها شناخته‌شده است. در این تحقیق، از طرح کاملا تصادفی در قالب فاکتوریل برای بررسی اثر افزودن ایزوله پروتئین سویا، پروتئین سویا اکسترود شده و هیدرولیزات پروتئین سویا در سطح‌های 5 و 10 درصد جایگزین آرد گندم و سه زمان تخمیر 30، 60 و 90 دقیقه، جهت بررسی فعالیت بازدارندگی ACE پپتیدهای جدا شده از خمیر آرد گندم استفاده شد. عصاره آبی خمیر پس از بررسی پروفایل وزن مولکولی به روش SDS-PAGE و اطمینان از حضور غلظت مناسب پپتیدهای با وزن مولکولی کم، از غشای 3 کیلو دالتون عبور داده شد و پپتیدهای زیست فعال جدا شده مورد آزمون قرار گرفت. آنالیز واریانس نتایج نشان داد که نوع پروتئین، درصد جایگزینی و زمان تخمیر با بر شدت درجه هیدرولیز و بر میزان فعالیت بازدارندگی ACE، پپتیدهای زیست فعال جدا شده از خمیر، موثر بودند (P<0.05). مقایسه میانگین نشان داد که خمیر حاوی هیدرولیزات پروتئین سویا بیشترین درجه هیدرولیز را داشت و همچنین بیشترین میزان بازدارندگی ACE در نمونه‌های حاوی این مشتق پروتئینی مشاهده شد. ایزوله پروتئین سویا و پروتئین سویا اکسترود شده، درجه هیدرولیز متفاوت ولی درصد بازدارندگی ACE مشابهی داشتند. بر اساس نتایج حاصل‌شده، جایگزینی آرد گندم با 5 درصد از هیدرولیزات پروتئین سویا تولید گونه‌های پپتید موثر در بازدارندگی ACE در خمیر را تا حد بازدارندگی بیشتر از 83 درصد امکان‌پذیر می‌سازد.

کلیدواژه‌ها

Alauddin, M., Shirakawa, H., Hiwatashi, K., Shimakage, A., Takahashi, S., Shinbo, M., Komai, M., 2015. Processed soymilk effectively ameliorates blood pressure elevation in spontaneously hypertensive rats. J. Funct. Foods 14, 126–132.
Beermann, C., Euler, M., Herzberg, J., Stahl, B., 2009. Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. Eur. food Res. Technol. 229, 637–644.
Bhaskar, N., Sakhare, P.Z., Suresh, P. V, Gowda, L.R., Mahendrakar, N.S., 2007. Biostabilization and preparation of protein hydrolysates from delimed leather fleshings.
Boschin, G., Scigliuolo, G.M., Resta, D., Arnoldi, A., 2014. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem. 145, 34–40. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.07.076
Boye, J.I., Roufik, S., Pesta, N., Barbana, C., 2010. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT - Food Sci. Technol. 43, 987–991. https://doi.org/10.1016/j.lwt.2010.01.014
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/https://doi.org/10.1016/0003-2697(76)90527-3
Chatterjee, C., Gleddie, S., Xiao, C.-W., 2018. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 10, 1211. https://doi.org/10.3390/nu10091211
Chen, G.-W., Tsai, J.-S., Sun Pan, B., 2007. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. Int. Dairy J. 17, 641–647. https://doi.org/https://doi.org/10.1016/j.idairyj.2006.07.004
Chen, L., Chen, J., Ren, J., Zhao, M., 2011. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocoll. 25, 887–897.
Chiang, W.-D., Tsou, M.-J., Tsai, Z.-Y., Tsai, T.-C., 2006. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem. 98, 725–732. https://doi.org/https://doi.org/10.1016/j.foodchem.2005.06.038
Dementiev, A., 2012. K-Ras4B lipoprotein synthesis: Biochemical characterization, functional properties, and dimer formation. Protein Expr. Purif. 84, 86–93. https://doi.org/https://doi.org/10.1016/j.pep.2012.04.021
Fitzgerald, C., Gallagher, E., Doran, L., Auty, M., Prieto, J., Hayes, M., 2014. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT - Food Sci. Technol. 56, 398–405. https://doi.org/https://doi.org/10.1016/j.lwt.2013.11.031
Fitzgerald, R.J., Murray, B.A., 2006. Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118–125.
FitzGerald, R.J., Murray, B.A., Walsh, D.J., 2004. Hypotensive peptides from milk proteins. J. Nutr. 134, 980S-988S.
Franco-Miranda, H., Chel-Guerrero, L., Gallegos-Tintore, S., Castellanos-Ruelas, A., Betancur-Ancona, D., 2017. Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing Lima bean or cowpea hydrolysates. LWT 80, 250–256. https://doi.org/https://doi.org/10.1016/j.lwt.2017.02.034
Ganong, W.F., 1995. Reproduction and the renin-angiotensin system. Neurosci. Biobehav. Rev. 19, 241–250. https://doi.org/https://doi.org/10.1016/0149-7634(94)00056-7
Jakubczyk, A., Karaś, M., Baraniak, B., Pietrzak, M., 2013. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 141, 3774–3780. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.095
Kong, B., Xiong, Y.L., 2006. Antioxidant Activity of Zein Hydrolysates in a Liposome System and the Possible Mode of Action. J. Agric. Food Chem. 54, 6059–6068. https://doi.org/10.1021/jf060632q
LAEMMLI, U.K., 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0
Li-Chan, E.C.Y., 2015. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 1, 28–37.
Liu, X., Li, T., Liu, B., Zhao, H., Zhou, F., Zhang, B., 2016. An External Addition of Soy Protein Isolate Hydrolysate to Sourdough as a New Strategy to Improve the Quality of Chinese Steamed Bread. J. Food Qual. 39, 3–12. https://doi.org/10.1111/jfq.12172
Mojallal-Tabatabaei, Z., Asoodeh, A., Asadi, F., Nezafati, H.R., 2014. ACE-Inhibitory and Antioxidant Activity of Temporin-Ra Peptide: Biochemical Characterization and Molecular Modeling Study. Int. J. Pept. Res. Ther. 20, 493–500. https://doi.org/10.1007/s10989-014-9416-x
Mozafarpour, R., Koocheki, A., Milani, E., Varidi, M., 2019. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocoll. 93, 361–373. https://doi.org/https://doi.org/10.1016/j.foodhyd.2019.02.036
Nielsen, M.S., Martinussen, T., Flambard, B., Sørensen, K.I., Otte, J., 2009. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155–165. https://doi.org/https://doi.org/10.1016/j.idairyj.2008.10.003
Nielsen, P.M., Petersen, D., Dambmann, C., 2001. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 66, 642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
Peñas, E., Diana, M., Frias, J., Quilez, J., Martinez-Villaluenga, C., 2015. A Multistrategic Approach in the Development of Sourdough Bread Targeted Towards Blood Pressure Reduction. Plant Foods Hum. Nutr. 70, 97–103. https://doi.org/10.1007/s11130-015-0469-6
Peñta-Ramos, E.A., Xiong, Y.L., 2002. Antioxidant Activity of Soy Protein Hydrolysates in a Liposomal System. J. Food Sci. 67, 2952–2956. https://doi.org/10.1111/j.1365-2621.2002.tb08844.x
Rho, S.J., Lee, J.-S., Chung, Y. Il, Kim, Y.-W., Lee, H.G., 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem. 44, 490–493. https://doi.org/https://doi.org/10.1016/j.procbio.2008.12.017
Roberts, P.R., Burney, J.D., Black, K.W., Zaloga, G.P., 1999. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60, 332–337.
Segura-Campos, M.R., Salazar-Vega, I.M., Chel-Guerrero, L.A., Betancur-Ancona, D.A., 2013. Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT - Food Sci. Technol. 50, 723–731. https://doi.org/https://doi.org/10.1016/j.lwt.2012.07.017
Shin, Z.-I., Yu, R., Park, S.-A., Chung, D.K., Ahn, C.-W., Nam, H.-S., Kim, K.-S., Lee, H.J., 2001. His-His-Leu, an Angiotensin I Converting Enzyme Inhibitory Peptide Derived from Korean Soybean Paste, Exerts Antihypertensive Activity in Vivo. J. Agric. Food Chem. 49, 3004–3009. https://doi.org/10.1021/jf001135r
Singh, B.P., Vij, S., 2017. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. LWT 86, 293–301.
Singh, B.P., Vij, S., Hati, S., 2014. Functional significance of bioactive peptides derived from soybean. Peptides 54, 171–179.
Surowka, K., Żmudziński, D., Fik, M., Macura, R., Łasocha, W., 2004. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innov. Food Sci. Emerg. Technol. 5, 225–234. https://doi.org/https://doi.org/10.1016/j.ifset.2004.01.005
Thiele, C., Grassl, S., Gänzle, M., 2004. Gluten Hydrolysis and Depolymerization during Sourdough Fermentation. J. Agric. Food Chem. 52, 1307–1314. https://doi.org/10.1021/jf034470z
Webb, K.E., 1990. Intestinal absorption of protein hydrolysis products: a review. J. Anim. Sci. 68, 3011–3022.
Zhang, J.-H., Tatsumi, E., Ding, C.-H., Li, L.-T., 2006. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 98, 551–557. https://doi.org/https://doi.org/10.1016/j.foodchem.2005.06.024
Zotta, T., Piraino, P., Ricciardi, A., McSweeney, P.L.H., Parente, E., 2006. Proteolysis in model sourdough fermentations. J. Agric. Food Chem. 54, 2567–2574. https://doi.org/10.1021/jf052504s