با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.

2 گروه علوم و مهندسی باغبانی، دانشکده علوم و مهندسی باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.

چکیده

استحکام محصولات یکی از عوامل مهم و تأثیرگذار در میزان بازارپسندی و همچنین تعیین کیفیت میوه‌ها به‌خصوص "به" می‌­باشد. لذا در پژوهش حاضر پس از تعیین مجموعه‌ای از تغییرات فیزیکی و شیمیایی میوه، پاسخ صوتی آن طی مدت زمان 4 ماه (هر 15 روز یک بار) موردبررسی قرار گرفت. به‌منظور تعیین سفتی میوه به‌صورت غیرمخرب چهار ویژگی (پیک آکوستیک، حداکثر فشار آکوستیک، میانگین فشار آکوستیک و فرکانس طبیعی) استخراج و با استفاده از برنامه‌نویسی ژنتیک و شبکه عصبی مدل‌سازی انجام و با مدل‌های موجود (FI و SIQ-FT) مقایسه گردید. در این مطالعه نشان داده شد که مدل‌سازی به‌روش برنامه‌نویسی ژنتیک و شبکه عصبی با ضریب همبستگی به‌ترتیب 9567/0 و 933/0 دارای عملکردی مطلوب‌تری در پیش‌بینی مقدار سفتی محصول "به" نسبت به مدل‌های موجود FI و SIQ-FT با ضریب همبستگی به‌ترتیب 601/0 و 754/0 دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Development of predictive model to determine Quince fruit firmness using genetic programming and Neural Network during storage

نویسندگان [English]

  • Shima Nasiri 1
  • Saman Abdanan 1
  • Mokhtar Heidari 2

1 Department of Mechanics Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Iran.

چکیده [English]

Introduction: Texture represents one of the four principal factors defining food/fruit quality, together with appearance, flavour and nutritional properties (Bourne, 2002), and plays a key role in consumer acceptability and recognition of quince. Textural characteristics of quinces defined by “crispness”, “juiciness”, “hardness”,“firmness” and “mealiness” are often key drivers of consumer preference. Many non-destructive methods, including image analysis, spectroscopy, ultrasound and sound techniques, have been developed to diagnose internal and external defects in fruits and vegetables. Cheng and Haugh (1994) used a frequency of 250-kHz, rather than 1-MHz, to detect hollow heart. They were not able to transmit successfully the ultrasound wave through the whole tuber using 1-MHz transducers but found the 250-kHz transducers to be practical for a transmission path length of up to 89.7 mm. In a research an acoustic setup was developed to simultaneously detect the resonant frequencies from equator and from calyx shoulder of pear. The researchers proposed index based on these two frequencies was used for firmness evaluation of non-spherical pear; Compared with two types of single frequency-based indices, the firmness sensitivity of the dual-frequency index is mostly close to that of MT penetration test. The firmness index can classify pears with a high total accuracy (93.4%), making it suitable for nondestructive detection of firmness of differently shaped pears (Zhang et al., 2018). The goal of this study was to develop a nondestructive method based on acoustic impulse response of quince fruit using genetic programming and artificial neural network during storage.
 
Materials and Methods: In the experiment 120 quince fruits (Cydonia oblonga) were harvested from a field near Isfahan 181 days after full flowering of the trees. For each cultivar, only samples of similar size and without visible external damage were chosen. The samples were packed in sterile nylon bags and stored at 4°C. Non-destructive test (acoustic response) as well as destructive test (chemical measurement and penetration test) were performed every 15 days for 4 months (Akbari Bisheh et al., 2014). Total soluble solids (TSS) were determined by a hand refractometer device (model: MT03 Japan) and expressed as °Brix. Ascorbic acid of the juice was measured by titration with copper sulfate and potassium iodide based on the Barakat et al. (1973) procedure. Titratable acidity was measured according to the AOAC method. To determine the total phenol content of juice, the Waterhouse method (2000) was used. Determination of the pH of the fruit extract using a pH meter (Portable Model P-755, Japan). Physical attributes of the samples including volume as well as major, minor, intermittent diameters and mass were calculated using the relations proposed by Stroshine and Hammand (1994). Penetration test was conducted by the material test machine (SANTAM, STM-20 model, Iran).
In order to analyze the response sound signal of quince in time and frequency domain, a system equipped with a sample holder with foam rubber covered surface, an impact mechanism, a microphone and an electronic circuit was utilized. To record impact sound features a microphone was positioned next to the fruit and was hit at three speed level (0.3, 0.9 and 1.5 m/s). After recoding sound, five features (acoustic peak, maximum acoustic pressure, mean acoustic pressure and natural frequency) were extracted and used as inputs for models. In order to predict the stiffness, four methods of genetic programming, neural network and existing mathematical models (FI and SIQ-FT) were used. In order to carry out statistical analysis, analysis of variance (ANOVA) and Duncan's multiple range test at 5% probability level were performed according to the completely randomized design (CRD).
 
Results and discussion: In this study, Duncan's multiple range comparison test was used to investigate the significant difference between destructive and non-destructive parameters at 5% probability level. According to the results, acoustic peak, maximum acoustic pressure, mean acoustic pressure and natural frequency were decreased by increasing storage time. Statistical analysis of the destructive tests also showed a decreasing trend at the 5% level. In several papers, two mathematical equations have been used to obtain the relationship between the mass resonance frequency and the sound of impact. In this study, genetic programming and neural network modeling were used to compare the results of these relationships. The regression coefficients between the actual and the predicted values for the resonance-mass relation and the effect of the sound from the collision were R2= 0.601 and R2= 0.754, respectively. Also, the regression values obtained from genetic programming and neural network modeling were R2= 0.9567 and R2 = 0.933, respectively. In a research, the overall R2 value amounts for stiffness prediction was reported to be 0.79 (Schotte et al., 1999). Abbaszadeh et al. (2013) evaluated watermelons texture using their vibration responses. They declared their proposed method could predict textural acceptability of watermelons with determination coefficients 0.99. According to the obtained values, the best methods for stiffness prediction were genetic programming and f neural network methods, respectively.

کلیدواژه‌ها [English]

  • Genetic programming
  • Neural Network
  • Quince fruit
  • storage
  • Stiffness
اکبری بیشه، ح.، حسینی، آ.، کریمی، ن. (1393). تاثیر پرمنگنات پتاسیم و گرمادهی بر کیفیت و عمر انبارمانی میوه رقم به اصفهان. اولین همایش ملی فناوری‌های نوین.
امرایی، س.؛ آبدانان مهدی زاده، س. و سالاری. س. (1395) سامانه برآورد وزن جوجه‌های گوشتی به صورت جداگانه با استفاده از پردازش تصویر و آنالیز رگرسیون چندگانه، مهندسی بیوسیستم ایران، دوره 47، شماره 4، ص 615-623.
بیاتی، م. ر.، رجبی‌پور، ع.، مبلی، ح.، ایوانی، ا. و بدیعی، ف. (1395). ارزیابی انبارمانی سیب گلاب با روش‌های صوتی و نفوذسنجی. نشریه ماشین-های کشاورزی. جلد 6، شماره 1، ص 188-200.
بی‌نام، آمارنامه کشاورزی کل کشور 1395. دفتر آمار و فناوری اطلاعات، معاونت برنامه‌ریزی و اقتصادی وزارت جهاد کشاورزی، نشریه شماره 2008668.
جهانگیری صالح، حسن بیگی، ابونجمی و لطفی. (2016). پیش‌بینی پاسخ آکوستیک، شاخص تردی و سفتی میوه خیار با استفاده از شبکه‌های عصبی مصنوعی. علوم و صنایع غذایی ایران، 14(63), 276-265.‎
سلطانی کاظمی، م.، آبدانان مهدی‌زاده، س. ، نداف‌زاده، م. (1396). برآورد میزان دو آنزیم‏ PPO و POD موز با استفاده از پردازش تصاویر دیجیتالی و آنالیز رگرسیونی چندگانه در طول دوره انبارمانی. فناوری‌های نوین غذایی، 5(4)، 597-612.
سلطانی کاظمی، م. آبدانان مهدی‌زاده، س. حیدری، م. و فارغ، س. م. (a1396). پیش‏بینی تغییرات برخی از ویژگی‌های کیفی آب توت سیاه(Morus alba Var nigra L.) طی مراحل مختلف رسیدگی بر اساس آنالیز فرکتال و بینایی ماشین. نشریه پژوهش‌های علوم صنایع غذایی ایران، 5 (13)، 730-743.
سلطانی کاظمی، م.، آبدانان مهدی‌زاده، س.، حیدری، م.، و فارغ، س. م. (b1396). استخراج موثرترین طول موج‏های طیف آب‏میوه توت سیاه (Morus alba Var nigra L.) با استفاده از مدل‏ های مختلف رگرسیون کمترین مربعات جزئی (PLSR). مجله علوم و صنایع غذایی ایران، 14(69)، 229-241.
هادیان دلجو، م. و ساری خانی، ح. (1391). ارزیابی اثر سالیسیلیک اسید بر حفظ کیفیت پس از برداشت میوه سیب رقم "گلاب کهنز" به زراعی کشاورزی. 14، 2، 1391، 71-82.
Abbaszadeh. R., Rajabipour. A., Mahjoob. M., Delshad M., Ahmadi. H. (2013). Evaluation of watermelon texture using their vibration responses. Sciverse ScienceDirect 115: 102-105.
Abdolahzare, Z., Abdanan Mehdizadeh, S. (2016). Nonlinear Mathematical Modeling of Seed Spacing Uniformity of a Pneumatic Planter using Genetic Programming and Image processing, Neural Computing and its application, 27(6), 1-13.
Chen, H., De Baerdemaeker, J., Vervaeke, F., (1992). Acoustic impulse response of apples for monitoring texture changes after harvest, Proceedings of the International Conference on Agricultural Engineering, October 1992, Beijing, China.
Costa. F., Cappellin. L., Longhi. S., Guerra. W., Magnago. P., Porro. D., Soukoulis. Ch., Salvi. S., Velasco. R., Biasioli. F., Gasperi. F. (2011). Assessment of apple (Malusa × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biology and Technology 61: 21-28.
De Ketelaere, B., et al. (2006). "Postharvest firmness changes as measured by acoustic and low-mass impact devices: a comparison of techniques." Postharvest Biology and Technology. 41.3 275-284.
Gomez, A.H., Wang, J., Pereira, A.G., (2005). Impulse response of pear fruit and its relation to Magness-Taylor firmness during storage. Postharvest Biology and Technology, 35(2), 209-215.
Javadikia1, H., Sabzi, S., I. Arribas, J., (2018). An automatic and non-intrusive hybrid computer vision system for the estimation of peel thickness in Thomson orange. Spanish Journal of Agricultural Research 16 (4), e0204, 15 pages. eISSN: 2171-9292.
Laura Corollaro. M., Aprea. E., Enderizzi. I., Betta. E., Luisa Dematte. M., Charles. M., Bergamaschi. M., Costa. F., Biasioli. F., Corelli Grappadelli. L., Gasperi. F. (2014). A combined sensory-instrumental tool for apple quality evaluation. Postharvest Biology and Technology 96:135-144.
Mao. J., Yu. Y., Rao. X., Wang. J. (2016). Firmness prediction and modeling by optimizing acoustic device for watermelons. Journal of Food Engineering 168 : 1-6.
Muttil, N., Lee, J.H., (2005). Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecol. Model. 189 (3), 363–376.
Nadafzadeh, M. Abdanan Mehdizadeh,S., Soltanikazemi, M. (2018). Development of computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browing using genetic programming modeling. Scientia Horticulturae, 231, 201-209.
Naganur HG, Sannakki SS, Rajpurohit VS, Arunkumar R, (2012). Fruits sorting and grading using fuzzy logic. Int JAdv Res Comput Eng Technol 1 (6): 117-122.
Orenes‐Piñero, E., Garcia‐Carmona, F., Sanchez‐Ferrer, A., (2006). Latent polyphenol oxidase from quince fruit pulp (Cydonia oblonga): purification, activation and some properties. Journal of the Science of Food and Agriculture, 86(13), pp.2172-2178.
Santosa W. D., Kholidi F. (2010). The Use of Clay as Potassium Permanganate Carrier to Delay the Ripening of Raja Bulu Banana. Journal. Horticulture. Indonesia , 1(2):89-96.
Schotte, S., De Belie, N., De Baerdemaeker, J., (1999). Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology 17 ,105–115.
Shmulevich, I., N. Galili, M. S. Howarth. (2003). Nondestructive dynamic testing of apples for firmness evaluation. Postharvest Biology and Technology 29: 2287-299.
Singh, Krishna K., B. Sreenivasula Reddy. (2006) "Post-harvest physico-mechanical properties of orange peel and fruit." Journal of food engineering. 73.2 112-120.
Tamure, C., Teryaki, O, (2012), Irradiation alone or combined with other alternative treatment to control postharvest diseases. African Journal of Agricultural Research, 8: 421-434.
Thendral.R, Suhasini.A, (2017). Automated skin defect identification system for orange fruit grading based on genetic algorithm. Current Sci 112 (8): 1704-1711.
Xiaobo, Z., Jiewen, Z., Yanxiao, L., (2007). Apple color grading based on organization feature parameters. Pattern Recognit. Lett. 28 (15), 2046–2053.
Zhao, J.W., Zou, X.B., Pan, Y.F., Liu, S.P., (2004). Research on method of apples odorant recognition based on GA neural network. J. Jiangsu Univ. Sci. Technol. 25 (1), 1–4.
CAPTCHA Image