نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس ، نور، ایران

2 پژوهشکده آبزی‌پروری آبهای داخلی، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندر انزلی، ایران.

چکیده

در این پژوهش اثر ترکیب دو پلیمر کربوکسی‎متیل سلولز و صمغ عربی به‌منظور بهبود خواص فیزیکی و مکانیکی فیلم‌های زیست‌تخریب‌پذیر موردمطالعه قرار گرفت. بدین منظور ابتدا فیلم‌های کربوکسی‌متیل سلولز و صمغ عربی به‌صورت جداگانه تهیه و در ادامه این دو پلیمر به نسبت‌های مختلف (75:25، 50:50 و 25:75) با یکدیگر ترکیب شده و خصوصیات فیزیکی، مکانیکی و حرارتی آن‌ها ارزیابی گردید. میزان نفوذپذیری به بخار آب در فیلم‌های ترکیبی دو پلیمر با افزایش سطح صمغ عربی به‌طور معنی‌داری کاهش یافت (05/0>p) و کمترین میزان عبور بخار آب در تیمار 75:25 (کربوکسی‌متیل سلولز: صمغ عربی) 2567/2 (g pas-1 m-1 s-1) مشاهده شد. میزان آب‌گریزی فیلم‌ها با اضافه کردن صمغ عربی به ماتریس فیلم کربوکسی‌متیل سلولز به‌طور معنی‌داری از 33/41 درجه به 10/61 درجه افزایش یافت (05/0>p). مقاومت کششی فیلم‌های تولیدشده با افزایش سطح صمغ عربی از 10/51 مگاپاسکال به 16/3 مگاپاسکال کاهش یافت. میزان عبور نور از فیلم‌های تولیدشده با افزایش نسبت صمغ عربی کاهش نشان داد (05/0>p). بیشترین و کمترین میزان دمای انتقال ذوب به‌ترتیب در تیمارهای کربوکسی‌متیل سلولز (29/265 درجه سانتی‌گراد) و صمغ عربی (9/241 درجه سانتی‌گراد) مشاهده شد. به‌طورکلی، از نتایج حاضر دریافت می‌شود که تهیه فیلم‌های ترکیبی از کربوکسی‌متیل سلولز و صمغ عربی باعث بهبود برخی از ویژگی‌های فیلم‌های تولیدشده ازقبیل خواص فیزیکی، حرارتی و میزان عبور نور گردید.

کلیدواژه‌ها

موضوعات

Arora, A., & Padua, G. W. Nanocomposites in food packaging. Journal of Food science, 2010; 75(1), R43-R49.
Azeredo, H. Nanocomposites for food packaging applications. Food Research International, 2009; 42 (9), 1240-1253.
ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
Bosquez-Molina, E., Tomás, S.A., Rodríguez-Huezo, M.E. Influence of CaCl on the water vapor permeability and the surface morphology of mesquite gum based edible films. Lebensmittel-Wissenschaft & Technologi - Food Sci. Techno. 2010; 43, 1419-1425.
Bolin, H.R., & Huxsoll, C.C. Control of Minimally Processed carrot (Daucuscarota) Surface Discoliration Caused by Abrasion Peeling. Journal of food science. 1991; 56(2): 416-422.
Bonilla, J., Fortunati, E. L. E. N. A., Atarés, L., Chiralt, A., & Kenny, J. M. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids: 2014; 35, 463–470.
Chen, C.H., Lai, L.S. Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids. 2008; 22, 1584-1595.
Dudhani, A. R., & Kosaraju, S. L. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydrate polymers, 2010; 81(2), 243-251.
Emiroğlu, Z. K., Yemis, G. P., Coskun, B. K., Candoğan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 2010; 86(2), 283-288.
Falguera, V., Quintero, J.P., Jimenez, A., Munoz, J. A. & Ibarz, A. Edible films and coating: Structures, active functions and trends in their use. Trends in Food Science & amp: Technology, 2011; 22 (6), 292-303.
Ghaderi, J., Hosseini, S. F., Keyvani, N., & Gómez-Guillén, M. C. Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 2019; 95, 122-132.
Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 2010; 11(4), 697-702.
Ghanbarzadeh, B., Almasi, H., Entezami, A., Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 2011; 33, 229-235.
Ghanbarzadeh, B., & Almasi, H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules: 2011; 48, 44-49.
Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. pHysical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers: 2011; 84(1), 477-483.
Guo, J., Ge, L., Li, X., Mu, C., & Li, D. Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids: 2014; 39, 243–250.
Jingou, J., Shilei, H., Weiqi, L., Danjun, W., Tengfei, W., & Yi, X. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids and Surfaces B: Biointerfaces, 2011; 83(1), 103-107.
Jouki, M., Yazdi, F.T., Mortazavi, S.A., & Koocheki, A. Qunice seed mucilage films incorporated with oregani essential oil. pHysical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids: 2014; 36, pp. 9-19.
Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z & Zhang, Z. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) Lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules: 2019; 143, 359-372.
Kanimozhi, K., Basha, S,K. & Kumari, V, S. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering. 2016; C, 61, pp. 484-491.
Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food hydrocolloids, 2019; 87, 858-868.
Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., & Porta, R. Preparation and mechanical properties of edible pectin–soy flour films obtained in the absence or presence of transglutaminase. Journal of biotechnology, 2003; 102(2), 191-198.
Martucci, J.F., Ruseckaite, R.A. Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil condition. Polymer Degradation and Stability, 2015; 116, 36-44.
Murmu, S.B., Mishra, H.N. The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 2018; 245, 820-828.
Ojagh, S.M., Rezaei, M., Razavi, S.H., Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 2010; 122, 161–166.
Ojagh, S.M., Shariatmadari, F., Adeli, A., Kordjozi, M., & Abdolahi, M. Development composite films based chitosan-Katira and evaluation physical and mechanical properties. Innovative Food Technologies. 2017; 4, 151-161. (In Persian).
Pereda, M., Marcovich, N.E., Aranguren, M.I. Characterization of chitosan/caseinate films. J Appl Polym Sci., 2011;107, 1080-1090.
Pereira, J. R., V, A., de Arruda, I.N.Q., & Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time-temperature indicators for applications in intelligent food packaging. Food Hydrocolloids: 2015; 43, pp. 180-188.
Phillips, G. O., & Williams, P. A. (Eds.). Handbook of hydrocolloids (pp. 53-64). Boca Raton, 2000; FL: CRC press.
Peesan, M., SupapHol, P & Rujiravaint, R. Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydrate Polymers. 2005; 60(3), pp. 343-350.
Qi, L., Xu, Z., Jiang, X., Hu, C & Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research: 2004; 339, 2693-2700.
Rivero, S., Garcia, M.A., Pinotti, A., Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies. 2010; 11 (2), 369-375.
Rhim, J. W., Hong, S. I., Park, H. M., & Ng, P. K. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of agricultural and food chemistry, 2006; 54(16), 5814-5822.
Rajaie, A., Shokrchizadeh, H. Investigation of physical and mechanical properties of edible film prepared from opopanax gum (Commiphora guidottii). 2018. 16 (91), 323-335.
Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M.A., Mohammadi, A., Ghasemiou, M., Hosseini, S.M & Khaksar, R. Characterization of carrageenan films incorporated plant essential oil with improved antimicrobial activity. Carbohydrate polymers: 2014; 101, pp. 582-591.
 Tabari, F., Rezaei, M., Aryaee, P and Abdullahi. Evaluation of some physical and mechanical properties of carboxymethyl cellulose/tragacanth Edible film. Iranian Food Science and Technology Research Journal. 2016 12 (1), 88-97.
Tongnuanchan, P., Benjakul, S., Prodparn, T., Pisuchpen, S., & Osako, K. Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids, 2016 56, 93-107.
Wang, L., Auty, M. A., & Kerry, J. P. Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. Journal of Food Engineering: 2010; 96(2), 199-207.
Yoksan, R., & Chirachanchai, S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: 2010; C, 30(6), 891-897.
Zhang, M., Li, X.H., Gong, Y.D., Zhao, N.M & Zhang, X.F. Properties and biocompatibility of chitosan film modified by blending with PEG. Bio mater: 2002; 23, 2641-2648.
CAPTCHA Image