نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

در این پژوهش، سینتیک خشک کردن، ساختار و رنگ کف خشک شده در فرآیند خشک کردن خامه شیر شتر به روش کف‌پوشی ارزیابی شد. بدین منظور فرآیند خشک کردن در 3 دمای 45، 60 و 75 درجه سانتی‌گراد و در 3 ضخامت 1، 3 و 5 میلی‌متر در یک خشک‌کن کابینتی غیرمداوم در قالب طرح مرکب مرکزی مورد مطالعه قرار گرفت. نتایج نشان داد که افزایش دما از ۴5 به 75 درجه سانتی‌گراد و کاهش ضخامت از 3 به 1 میلی‌متر به‌ترتیب منجر به کاهش 50 و 80 درصدی در زمان خشک شدن نمونه‌ها شد. ضریب نفوذ موثر کلی (Deff) نمونه‌های مورد آزمون نیز بین 10-10 ×۱1/8 تا 9-10 ×09/7 متر مربع بر ثانیه متغیر بود و افزایش دما منجر به افزایش معنی‌دار (سطح 95 درصد) ضریب نفوذ موثر نمونه‌ها شد. انرژی فعال‌سازی (Ea) نمونه‌های مورد آزمون در دامنه 59/25 تا 22/38 کیلوژول بر مول به‌دست آمد و ﻧﺘﺎﯾﺞ مقایسه میانگین‌ها نشان داد که با افزایش ضخامت کف، انرژی فعال‌سازی نمونه‌ها نیز افزایش یافت. 8 مدل نیز برای بررسی سینتیک خشک شدن نمونه‌ها مورد ارزیابی قرار گرفت که در تمام حالت‌های خشک شدن کف از نظر دما و ضخامت، مدل‌های پیج و مدیلی با مقدار R2 بالای 99/0 و کمترین ریشه میانگین مربعات خطا دارای بهترین برازش با داده‌های آزمایشی بودند. بررسی تصاویر دیجیتالی نمونه‌ها نشان داد که در دماهای پایین، ساختار کف‌های خشک شده حالتی صاف داشتند و با افزایش دما، ساختار حالت غیرمسطح و متخلخل‌تری پیدا کردند. همچنین روند تغییرات پارامتر های ماتریس هم‌زمانی سطح خاکستری (GLCM) (انرژی، همبستگی و یکنواختی) نمونه‌ها با تغییرات دما و ضخامت تقریبا یکسان بود به‌طوری که افزایش دمای خشک شدن و کاهش ضخامت نمونه‌ها منجر به کاهش معنی‌دار (سطح 95 درصد) این پارامترها شد. افزایش ضخامت کف نیز در دماهای بالا منجر به کاهش شاخص قهوه‌ای شدن و در دماهای پایین منجر به افزایش شاخص قهوه‌ای شدن نمونه­ها گردید.

کلیدواژه‌ها

موضوعات

  1. Akgun, N. A., & Doymaz, I. (2005). Modelling of olive cake thin-layer drying process. Journal of food engineering, 68(4), 455-461. https://doi.org/10.1016/j.jfoodeng.2004.06.023
  2. Akpinar, E. K. (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of food engineering, 73(1), 75-84. https://doi.org/10.1016/j.jfoodeng.2005.01.007
  3. Al Kanhal, H. A. (2010). Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal20(12), 811-821. https://doi.org/10.1016/j.idairyj.2010.04.003
  4. Atarodi, M.R. (2014). Optimization of production conditions of Spirulina Platensis microalgae powder using floor drying method, Master Thesis, Ferdowsi University of Mashhad [In Persian].
  5. Azizpour, M., Mohebbi, M., Hossein Haddad Khodaparast, M., & Varidi, M. (2014). Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus). Drying Technology, 32(4), 374-384. https://doi.org/10.1080/07373937.2013.794829
  6. Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis, V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of food engineering, 75(2), 205-214. 1016/j.jfoodeng.2005.04.008
  7. Benmakhlouf, N., Azzouz, S., Monzó-Cabrera, J., Khdhira, H., & Elcafsi, A. (2017). Controlling mechanisms of moisture diffusion in convective drying of leather. Heat and Mass Transfer, 53(4): 1237-1245. https://doi.org/10.1007/s00231-016-1900-8
  8. Brygidyr, A., Rzepecka, M., & McConnell, M. (1977). Characterization and drying of tomato paste foam by hot air and microwave energy. Canadian Institute of Food Science and Technology Journal, 10(4), 313-319. https://doi.org/10.1016/S0315-5463(77)73553-9
  9. Carić, M. (1994). Concentrated and dried dairy products: VCH Publishers Inc.
  10. Ceylan, İ., Aktaş, M., & Doğan, H. (2007). Mathematical modeling of drying characteristics of tropical fruits. Applied Thermal Engineering, 27(11-12), 1931-1936. https://doi.org/10.1016/j.applthermaleng.2006.12.020
  11. Chen, X. D., & Mujumdar, A. S. (2009). Drying technologies in food processing: John Wiley & Sons.
  12. Codex stan 207-1999, Standard for cream powder, half cream powder and high fat milk powder.
  13. Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018). Influence of foam thickness on production of lime juice powder during foam-mat drying: Experimental and numerical investigation. Powder technology, 328, 470-484. https://doi.org/10.1016/j.powtec.2018.01.034
  14. DeMan, J. M., Finley, J. W., Hurst, W. J., & Lee, C. Y. (1999). Principles of food chemistry: Springer.
  15. Ertekin, C., & Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
  16. Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. International journal of food science & technology, 45(2), 278-288. https://doi.org/10.1111/j.1365-2621.2009.02133.x
  17. Ghaboos, S. H. H., Ardabili, S. M. S., Kashaninejad, M., Asadi, G., & Aalami, M. (2016). Combined infrared-vacuum drying of pumpkin slices. Journal of food science and technology, 53(5), 2380-2388. https://doi.org/10.1007/s13197-016-2212-1
  18. Guiné, R. (2018). The Drying of Foods and its Effect on the Physical-chemical, sensorial and Nutritional Properties. International Journal of Food Engineering, 2(4), 93-100. doi: 10.18178/ijfe.4.2.93-100
  19. Hall, C. W., & Hedrick, T. I. (1966). Drying milk and milk products. Drying milk and milk products.
  20. Hassan, A., Hagrass, A., Soryal, K., & El-Shabrawy, S. (1987). Physico-chemical properties of camel milk during lactation period in Egypt. Egyptian Journal of Food Science (Egypt).
  21. Hassanzadeh, M., Shahidi, F., and Salahi, M. (2019). Investigation of process parameters and physical and chemical properties of kilka fish during floor drying. Iranian Food Science and Technology Research, 14 (4), 601-616 [In Persian].  
  22. Inyang, E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic models for drying techniques—food materials. Advances in Chemical Engineering and Science, 8(02), 27. DOI: 10.4236/aces.2018.82003
  23. Izadi, Z., Mohebbi, M., Shahidi, F., Varidi, M., & Salahi, M. R. (2020). Cheese powder production and characterization: A foam-mat drying approach. Food and Bioproducts Processing, 123, 225-237. https://doi.org/10.1016/j.fbp.2020.06.019
  24. Labelle, R. (1984). Principles of foam mat drying. Journal of Food Technology, 20, 89-91.
  25. Lemus‐Mondaca, R., Betoret, N., Vega‐Galvez, A., & Lara‐Aravena, E. (2009). Dehydration characteristics of papaya (Carica Pubenscens): determination of equilibrium moisture content and diffusion coefficient. Journal of Food Process Engineering, 32(5), 645-663. https://doi.org/10.1111/j.1745-4530.2007.00236.x
  26. Liu, X., Qiu, Z., Wang, L., Cheng, Y., Qu, H., & Chen, Y. (2009). Mathematical modeling for thin layer vacuum belt drying of Panax notoginseng extract. Energy Conversion and Management, 50(4), 928-932. https://doi.org/10.1016/j.enconman.2008.12.032
  27. Lopez, A., Iguaz, A., Esnoz, A., & Virseda, P. (2000). Thin-layer drying behaviour of vegetable wastes from wholesale market. Drying Technology, 18(4-5), 995-100. https://doi.org/10.1080/07373930008917749
  28. Menges, H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of Golden apples. Journal of food engineering, 77(1), 119-125. https://doi.org/10.1016/j.jfoodeng.2005.06.049
  29. Mir Arab Razi, S. (2014). The effect of sodium caseinate proteins, whey concentrate, albumin and gelatin on the sensory and physicochemical properties of chocolate mousse, M.Sc. Thesis, Ferdowsi University of Mashhad [In Persian].
  30. O’Callaghan, D., & Hogan, S. (2013). The physical nature of stickiness in the spray drying of dairy products—a review. Dairy Science & Technology, 93(4-5), 331-346. https://doi.org/10.1007/s13594-013-0114-9
  31. Qing-Guo, H., Min, Z., Mujumdar, A. S., Wei-hua, D., & Jin-cai, S. (2006). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24(8), 1025-1032.
  32. Rajkumar, P., Kailappan, R., Viswanathan, R., Raghavan, G., & Ratti, C. (2007). Foam mat drying of alphonso mango pulp. Drying Technology, 25(2), 357-365. https://doi.org/10.1080/07373930600776217
  33. Sajadi, S. (2018). Drying cream flooring: optimizing foam production conditions and evaluating powder properties, M.Sc. Thesis, Ferdowsi University of Mashhad [In Persian].
  34. Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2015). Foam‐mat drying of cantaloupe (cucumis melo): optimization of foaming parameters and investigating drying characteristics. Journal of Food Processing and Preservation, 39(6), 1798-1808. https://doi.org/10.1111/jfpp.12414
  35. Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2017). Development of cantaloupe (Cucumis melo) pulp powder using foam-mat drying method: Effects of drying conditions on microstructural of mat and physicochemical properties of powder. Drying Technology, 35(15), 1897-1908. https://doi.org/10.1080/07373937.2017.1291518
  36. Salehi, F., Kashaninejad, M., & Jafarianlari, A. (2017). Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat and Mass Transfer, 53(5), 1751-1759. https://doi.org/10.1007/s00231-016-1931-1
  37. Sun, J., Hu, X., Zhao, G., Wu, J., Wang, Z., Chen, F., & Liao, X. (2007). Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food science and technology international, 13(2), 91-97. https://doi.org/10.1177/1082013207078525
  38. Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., & Soponronnarit, S. (2011). Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT-Food Science and Technology, 44(6), 1502-1510. https://doi.org/10.1016/j.lwt.2011.01.003
  39. Tsotsas, E., Gnielinski, V., & Schlünder, E.-U. (2000). Drying of Solid Materials. In Ullmann's Encyclopedia of Industrial Chemistry.
  40. Vega-Gálvez, A., Lara, E., Flores, V., Di Scala, K., & Lemus-Mondaca, R. (2012). Effect of selected pretreatments on convective drying process of blueberries (var. O’neil). Food and Bioprocess Technology, 5(7), 2797-2804. https://doi.org/10.1007/s11947-011-0656-x
  41. Xiao, H.-W., Lin, H., Yao, X.-D., Du, Z.-L., Lou, Z., & Gao, Z.-j. (2009). Effects of different pretreatments on drying kinetics and quality of sweet potato bars undergoing air impingement drying. International Journal of Food Engineerig. 5 (5). https://doi.org/10.2202/1556-3758.1758
  42. Yaghoubi, M., Askari, B., Mokhtarian, M., Tavakolipour, H., Rad, A. E., Jafarpour, A., & Heidarian, S. (2013). Possibility of using neural networks for moisture ratio prediction in dried potatoes by means of different drying methods and evaluating physicochemical properties. Agricultural Engineering International: CIGR Journal, 15(4), 258-269.
  43. Zielinska, M., & Markowski, M. (2010). Air drying characteristics and moisture diffusivity of carrots. Chemical Engineering and Processing: Process Intensification, 49(2), 212-218. https://doi.org/10.1016/j.cep.2009.12.005