با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 دانشجوی دکترا، دانشگاه ارومیه، دانشکده کشاورزی، گروه علوم و صنایع غذایی

2 ارومیه

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

4 گروه پاتوبیولوژی و کنترل کیفی، پژوهشکده آرتیمیا و آبزی پروری، دانشگاه ارومیه، ارومیه، ایران

چکیده

به‌دلیل تمایل به غذاهای طبیعی و سالم، بازار غذاهای فراسودمند به‌سرعت در حال رشد است. در این میان، پروبیوتیک‌ها به‌دلیل توانایی بالقوه آن‌ها، در فرمولاسیون‌های غذایی سالم، به‌طور جدی موردتوجه قرار گرفته‌اند. بیشترین نگرانی در مورد پروبیوتیک‌ها این است که ممکن است تعداد باکتری‌های پروبیوتیک در زمان مصرف کمتر از مقدار موردنیاز (CFU/g 107) باشد. بنابراین در این مطالعه، فیلم‌های خوراکی پروبیوتیک کربوکسی‌متیل‌ سلولز (CMC) حاوی لاکتوباسیلوس کازئی و پروتئین هیدرولیزشده عضله ماهی کپور نقره‌ای (SCMH) تهیه شد و زنده‌مانی سلول‌های باکتری در طول 30 روز نگهداری (در فواصل زمانی 1، 10، 20 و 30 روز) در دماهای 25، 4 و 18- درجه سانتی‌گراد بررسی گردید. جهت استخراج پروتئین از روش انحلال قلیایی/ترسیب اسیدی استفاده شد. ایزوله پروتئین استخراجی به‌وسیله آنزیم آلکالاز (%5 وزنی/وزنی) در دمای °Ϲ 50 و 8 = pH به‌مدت 3 دقیقه هیدرولیز گردید. فیلم‌ها با انحلال SCMH و CMC با نسبت 2:1 در آب مقطر تهیه شدند و لاکتوباسیلوس کازئی با غلظت CFU/mL 108 به فیلم‌ها اضافه شد. خصوصیات رنگی، فیزیکی، استحکام کششی نهایی (UTS) و ازدیاد طول در نقطه شکست (EB) فیلم‌ها بررسی شد. الگوهای ساختاری نمونه‌های فیلم با پراش‌سنج اشعه X در دمای اتاق با زاویه پراش (θ2) از 5 تا 40 درجه به‌دست آمد. طیف‌سنجی FT-IR فیلم‌ها در طول موج cm-1 500-3500 ثبت شد. نتایج آنالیز FT-IR، XRD و DSC، حاکی از شکل‌گیری پیوند هیدروژنی بین لاکتوباسیلوس کازئی و ماتریس فیلم و همچنین اثر پلاستی‌سایزری SCMH بودند. به‌طوری‌که فیلم CMC خالص حاوی باکتری، بالاترین خصوصیات مکانیکی (%9/29=EB، MPa 7/3=UTS) را داشت. افزودن SCMH به فیلم‌ها، به‌طور قابل‌توجهی (p˂0.05) زنده­‌مانی لاکتوباسیلوس کازئی را در همه دماها افزایش داد و توانست در پایان دوره نگهداری در دمای °Ϲ 4 مقدار آن را در حد log CFU/g 01/0 ±7 نگه دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Carboxymethyl cellulose based bioactive edible films with Lactobacillus casei and fish protein hydrolysates

نویسندگان [English]

  • Zhila Ghasemi 1
  • Mohammad Alizadeh khaled abad 2
  • Hadi Almasi 3
  • Mehdi Nikoo 4

1 PhD. Candidate, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran

2 urmia

3 Associate Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran

4 Associate Professor, Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan 57179-44514, Iran

چکیده [English]

Nowadays, probiotics have been seriously considered for their potential application in healthy food formulations. The most highlighted concern about probiotics is that the number of probiotic bacteria at the time of consumption may be lower than the required value (107 CFU/g). A new approach is the immobilization of probiotic cells in the matrix of edible films. So in this study, edible carboxymethyl cellulose (CMC) probiotic films containing Lactobacillus casei, and the silver carp muscle protein hydrolysates (SCMH) prepared by using limited Alcalase hydrolysis, were analyzed and the viability of bacterial cells was determined at 25, 4, and -18°C for 30 days. An alkaline solubilization/acid precipitation method was used to isolate silver carp white muscle proteins. Protein isolate (3%, W/V) was hydrolyzed with 5% E/S ratio (w/w) Alcalase at 50°C and pH 8.0 for 3 min. Briefly, films were prepared by dissolving SCMH and CMC powder (1.5%, w/v) in a ratio of 1:2 in distilled water and L. casei was added to a final concentration of 108 CFU/mL. Probiotics were counted at intervals of 1, 10, 20, and 30 day. The physical, mechanical [Ultimate tensile strength (UTS) and elongation at break (EB)], thermal and structural properties were determined. XRD patterns of the film samples collected by X-ray diffractometer (XRD) and Fourier transform infrared (FT-IR) spectroscopy of the film samples were recorded. The results indicated that the addition of SCMH significantly (p˂0.05) improved the L. casei viability at all three temperatures. Thickness, moisture absorption, and water vapor permeability (WVP) of the films were not influenced by addition of the probiotic. However, the addition of SCMH negatively affected the film’s mechanical properties. The FT-IR analysis confirmed the formation of hydrogen bonds between L. casei and the CMC matrix, the XRD and differential scanning calorimetry (DSC) analyses confirmed the plasticizing effect of SCMH on the films. Thus, CMC films containing L. casei showed the highest UTS (3.7 MPa) and EB (29.9%). Generally, the results indicated that the SCMH incorporated CMC-based film can be a good carrier for probiotics as bioactive food packaging system with promising potential for shelf life extension of perishable foods.

کلیدواژه‌ها [English]

  • Protein hydrolysates
  • L. casei
  • Carboxymethyl cellulose
  • Edible films
  • Probiotic
Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. Elsevier publishing. 1st edition.
Akhtar, H. M. S., Riaz, A., Hamed, Y. S., Abdin, M., Chen, G., Wan, P., & Zeng, X. (2018). Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules, 118, 469- 477.
Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1- 5.
Alvarez, M.V., Bambace, M.F., Quintana, G., Gomez-Zavaglia, A., & Moreira, M.R. (2021). Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. LWT- Food Science and Technology, 137, 110483.
Angles, M. N., & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33(22), 8344- 8353.
Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265- 273.
Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocolloids, 29(1), 166- 174.
Arihara, K. (2006). Strategies for designing novel functional meat products. Meat Science, 74(1), 219- 229.
ASTM. (2005). Standard test methods for water vapor transmission of materials Standard: E96‐05. Annual book of American standard testing methods.
ASTM, S. (2002). Standard test method for tensile properties of thin plastic sheeting-D882–02. Annual Book of American Standard Testing Methods.
Azarifar, M., Ghanbarzadeh, B., Khiabani, M. S., Basti, A. A., Abdulkhani, A., Noshirvani, N., & Hosseini, M. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydrate Polymers, 208, 457- 468.
Călinoiu, L. F., Vodnar, D. C., & Precup, G. (2016). The probiotic bacteria viability under different conditions. Bulletin UASVM Food Science and Technology, 73(2), 55- 60.
Charalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133- 141.
Cruz, A. G., Antunes, A. E., Sousa, A. L. O., Faria, J. A., & Saad, S. M. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233- 1239.
da Cruz, A. G., de AF Faria, J., & Van Dender, A. G. (2007). Packaging system and probiotic dairy foods. Food Research International, 40(8), 951- 956.
Dai, H., Huang, Y., & Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 185, 1- 11.
De Lacey, A. L., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innovative Food Science & Emerging Technologies, 16, 277- 282.
Dianin, I. B., Oliveira Jr, A.G., Pimentel, T. C., Hernandes, N.F., & Costa, G.N. (2019). Edible biofilms formulated with whey protein isolate and L. casei probiotic culture: characterization and application in tomatoes and grapes. Chemical Engineering Transactions, 75, 469- 474.
Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT-Food Science and Technology, 87, 54- 60.
Espitia, P. J., Batista, R. A., Azeredo, H. M., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42-52.
Fiocco, D., Longo, A., Arena, M. P., Russo, P., Spano, G., & Capozzi, V. (2020). How probiotics face food stress: They get by with a little help. Critical Reviews in Food Science and Nutrition, 60(9), 1552- 1580.
Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packaging and Shelf Life, 16, 31- 40.
Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442- 447.
Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48(1), 44- 49.
Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43(10), 2402- 2408.
Giménez, B., Gómez-Estaca, J., Alemán, A., Gómez-Guillén, M. C., & Montero, M. P. (2009). Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocolloids, 23(5), 1322- 1327.
Hasanzati Rostami, A., Motamedzadegan, A., Hosseini, S. E., Rezaei, M., & Kamali, A. (2017). Evaluation of plasticizing and antioxidant properties of silver carp protein hydrolysates in fish gelatin film. Journal of Aquatic Food Product Technology, 26(4), 457- 467.
He, J., Wu, Z., Pan, D., Guo, Y., & Zeng, X. (2017). Effect of selenylation modification on antitumor activity of peptidoglycan from Lactobacillus acidophilus. Carbohydrate Polymers, 165, 344- 350.
Hirsch, E., Pantea, E., Vass, P., Domján, J., Molnár, M., Suhajda, A., Andersen, S.K., Vigh, T., Verreck, G., Marosi, G.J., & Nagy, Z.K. (2021). Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. Food and Bioproducts Processing, 128, 84- 94.
Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocolloids, 25(1), 82- 90.
Jiang, L., Wang, B., Li, B., Wang, C., & Luo, Y. (2014). Preparation and identification of peptides and their zinc complexes with antimicrobial activities from silver carp (Hypophthalmichthys molitrix) protein hydrolysates. Food Research International64, 91- 98.
Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chemistry, 141(2), 1041- 1049.
Karimi, N., Alizadeh, A., Almasi, H., & Hanifian, S. (2020). Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. LWT-Food Science and Technology, 121, 108978.
Khodaei, D., Hamidi-Esfahani, Z., & Lacroix, M. (2020). Gelatin and low methoxyl pectin films containing probiotics: Film characterization and cell viability. Food Bioscience, 100660.
Kim, S. K., & Wijesekara, I. (2013). Marine-Derived Peptides: Development and Health Prospects. Marine Proteins and Peptides: Biological Activities and Applications; Kim, S.-K., Ed, 1-3.
Liu, Z., & Han, J. H. (2005). Film‐forming characteristics of starches. Journal of Food Science, 70(1), E31- E36.
Ma, D., Jiang, Y., Ahmed, S., Qin, W., & Liu, Y. (2019). Physical and antimicrobial properties of edible films containing Lactococcus lactis. International Journal of Biological Macromolecules, 141, 378- 386.
Mandal, A., & Chakrabarty, D. (2019). Studies on mechanical, thermal, and barrier properties of carboxymethyl cellulose film highly filled with nanocellulose. Journal of Thermoplastic Composite Materials, 32(7), 995- 1014.
McFarland, J. (1907). The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association, 94(14), 1176- 1178.
Mishra, V., & Prasad, D. N. (2005). Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. International Journal of Food Microbiology, 103(1), 109- 115.
Mozaffarzogh, M., Misaghi, A., Shahbazi, Y., & Kamkar, A. (2020). Evaluation of probiotic carboxymethyl cellulose-sodium caseinate films and their application in extending shelf life quality of fresh trout fillets. LWT - Food Science and Technology, 126, 109305.
Nie, H., Liu, M., Zhan, F., & Guo, M. (2004). Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydrate Polymers, 58(2), 185- 189.
Nikoo, M., Benjakul, S., Yasemi, M., Gavlighi, H. A., & Xu, X. (2019). Hydrolysates from rainbow trout (Oncorhynchus mykiss) processing by-product with different pretreatments: Antioxidant activity and their effect on lipid and protein oxidation of raw fish emulsion. LWT, 108, 120- 128.
Nikoo, M., Regenstein, J. M., Noori, F., & Gheshlaghi, S. P. (2020). Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT-Food Science and Technology, 110702.
Nuanmano, S., Prodpran, T., & Benjakul, S. (2015). Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids, 47, 61- 68.
Oliveira-Alcântara, A.V., Abreu, A.A.S., Gonçalves, C., Fuciños, P., Cerqueira, M.A., Gama, F.M.P., Pastrana, L.M., Rodrigues, S., & Azeredo, H.M.C. (2020). Bacterial cellulose/cashew gum films as probiotic carriers. LWT - Food Science and Technology, 130, 109699.
Orozco-Parra, J., Mejía, C.M., & Villa, C.C. (2020). Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocolloids, 104, 105754.
Pavli, F., Kovaiou, I., Apostolakopoulou, G., Kapetanakou, A., Skandamis, P., Nychas, G. J. E., ... & Chorianopoulos, N. (2017). Alginate-based edible films delivering probiotic bacteria to sliced ham pretreated with high pressure processing. International Journal of Molecular Sciences, 18(9), 1867.
Peng, X., Kong, B., Xia, X., & Liu, Q. (2010). Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. International Dairy Journal, 20(5), 360- 365.
Piermaria, J., Diosma, G., Aquino, C., Garrote, G., & Abraham, A. (2015). Edible kefiran films as vehicle for probiotic microorganisms. Innovative Food Science & Emerging Technologies, 32, 193- 199.
Pruksarojanakul, P., Prakitchaiwattana, C., Settachaimongkon, C., & Borompichaichartkul, J. (2020). Synbiotic edible film from konjac glucomannan composed of Lactobacillus casei 01® and Orafti®GR, and its application as coating on bread buns. Journal of the Science of Food and Agriculture, 100, 2610– 2617.
Rasdhari, M., Parekh, T., Dave, N., Patel, V., & Subhash, R. (2008). Evaluation of various physico-chemical properties of Hibiscus sabdariffa and L. casei incorporated probiotic yoghurt. Pakistan Journal of Biological Science, 11(17), 2101- 8.
Settier-Ramírez, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2020). PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. International Journal of Food Microbiology, 322, 108545.
Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT-Food Science and Technology, 118, 108758.
Shavandi, A., Hou, Y., Carne, A., McConnell, M., & Bekhit, A. E. D. A. (2019). Marine waste utilization as a source of functional and health compounds. In Advances in food and nutrition research (Vol. 87, pp. 187-254). Academic Press.
Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids, 70, 345- 355.
Sun, X., Acquah, C., Aluko, R. E., & Udenigwe, C. C. (2020). Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. Journal of Functional Foods, 64, 103680.
Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 1- 8.
Vasiljevic, T., & Shah, N. P. (2008). Probiotics—from Metchnikoff to bioactives. International Dairy Journal, 18(7), 714- 728.
Wang, K., Han, L., Hong, H., Pan, J., Liu, H., & Luo, Y. (2020). Purification and identification of novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport. Food Chemistry, 128275.
Wang, T., Zhao, Q., & Wang, Q. (2013). Production and antioxidant properties of marine‐derived bioactive peptides. In: Marine proteins and peptides: Biological activities and applications, 385-406.
Wang, A., Lin, J., & Zhong, Q. (2021). Enteric rice protein-shellac composite coating to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514. Food Hydrocolloids, 113, 106469.
Xu, Q., Hong, H., Wu, J., & Yan, X. (2019). Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology86, 399- 411.
Ye, J., Ma, D., Qin, W., & Liu, Y. (2018). Physical and antibacterial properties of sodium alginate-sodium carboxymethylcellulose films containing Lactococcus lactis. Molecules, 23(10), 2645.
Yu, Y. J., Amorim, M., Marques, C., Calhau, C., & Pintado, M. (2016). Effects of whey peptide extract on the growth of probiotics and gut microbiota. Journal of Functional Foods, 21, 507- 516.
Zabihollahi, N., Alizadeh, A., Almasi, H., Hanifian, S., & Hamishekar, H. (2020). Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. International Journal of Biological Macromolecules, 160, 409- 417.
CAPTCHA Image