نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 عضو هیات علمی دانشگاه بوعلی سینا همدان

2 دانشیار/دانشگاه بوعلی سینا همدان

چکیده

خشک‌‎کردن مواد غذایی می‌تواند ماندگاری آن را افزایش داده و موجب کاهش هزینه حمل‌و‌نقل و نگهداری آن شود. قانون دوم فیک معمولاً برای ارزیابی فرآیندهای انتقال جرم در فرآیند خشک‌کردن به‌روش استاندارد مورداستفاده قرار می‌گیرد و براساس بسیاری از فرضیات است. درک معنای انتقال جرم در محصولات می‌تواند روند خشک‌شدن و کیفیت محصول را بهبود بخشد. دینامیک سیالات محاسباتی (CFD) با استفاده از ریاضیات قدرتمند رایانه‌ای و کاربردی به‌منظور پیش‌بینی انتقال جرم در فرآیندهای صنعتی، شرایط جریان سیال را مدل می‌کند. هدف از این تحقیق بررسی عددی رفتار خشک‌شدن مغز پسته با استفاده از روش CFD و ارزیابی نتایج عددی در شرایط بستر سیال، نیمه‌سیال و بستر ثابت و همچنین دمای هوا 45 ، 60 ، 75 و 90 درجه سانتی‌گراد بود. در حین خشک‌کردن با استفاده از دینامیک سیال محاسباتی و کد CFD Fluent، جریان‌های خارجی و ‌زمینه‎های دما در اطراف جسم استوانه‌ای (10 ×5/7 میلی‌متر) در تجزیه و تحلیل عددی پیش‌بینی می‌شود. برای آزمایشات خشک‌کردن از خشک‌کن بستر سیال آزمایشگاهی استفاده شد. قسمت‌های اصلی خشک‌کن فن شعاعی جلو، محفظه خشک‌کن، بخاری برقی، اینورتر و کنترل‌کننده دما است. اتصالات خشک‌کن سنسورهای دمای ورودی و خروجی، بادسنج و کامپیوتر هستند. بخش عددی انجام و با داده‌های تجربی کنار هم قرار گرفت. نتیجه حل عددی در دمای 60 درجه سانتی‌گراد، 75 درجه سانتی‌گراد و 90 درجه سانتی‌گراد به‌جز در دمای هوا 45 درجه سانتی‌گراد، بسیار نزدیک به نتایج تجربی بود. میانگین خطای مطلق در بستر ثابت، در دمای 60، 75 و 90 درجه سانتی‌گراد به‌ترتیب 2123/0، 1257/0 و 0337/0 بود که کمتر از دمای 45 درجه سانتی‌گراد و مقادیر R2 برای این دماها به‌ترتیب 9903/0، 9705/0 و 9807/0 بود. با کاهش دما، مقادیر  و χ2 در تمام شرایط بستر افزایش می‌یابد. مقادیر متوسط R2 برای تمام شرایط بستر اعمال‌شده 9850/0 محاسبه شد. این مقدار نشان داد که توافق زیاد بین نتایج تجربی و راه حل‌های عددی وجود دارد.

کلیدواژه‌ها

موضوعات

AbbasiSouraki B., Mowla D., 2008, Experimental and Theoretical Investigation of Drying Behavior of Garlic in an Inert Medium Fluidized Bed Assisted by Microwave. Journal of Food Engineering, 88, 438– 449.
Aghbashlo M., Kianmehr M.H., Samimi-Akhijahani H., 2008, Influence of Drying Conditions on the Effective Moisture Diffusivity, Energy of Activation and Energy Consumption During the Thin-Layer Drying of Beriberi Fruit (Berberidaceae). Energy Conversion and Management, 49, 2865– 2871.
Akpinar E.K., Bicer Y., 2005, Modeling of the Drying of Eggplants in Thin Layer. International Journal of Food Science and Technology, 40, 273– 281.  
AmiriChayjan R., Alizade H.H.A., Shadidi B., 2012, Modeling of Some Pistachio Drying Characteristics in Fix, Semi Fluid and Fluid Bed Dryer. Agricultural Engineering International: CIGR Journal, 14, 143- 154.
Anderson J.D., 1992, Governing Equations of Fluid Dynamics. In: Wendt J.F. (eds) Computational Fluid Dynamics. Springer, Berlin, Heidelberg.
AOAC, 1995, Official Methods of Analysis, Association of Official Analytical Chemists, Washington, DC, USA.
Azharul Karim Md., Hawlader M.N.A., 2005, Mathematical modelling and experimental investigation of tropical fruits drying, International Journal of Heat and Mass Transfer, 48, 4914- 4925.
Carmo J.E.F., Lima A.G.B.D., 2004, Drying of Lentils Including Shrinkage: A Numerical Simulation. Drying. Proceedings of the 14th International Drying Symposium, São Paulo, Brazil, 22-25, 510- 517.
Castro A.M., Mayorga E.Y., Moreno F.L., 2018, Mathematical modelling of convective drying of fruits: A review, Journal of Food Engineering, 223, 152- 167,
Demissie P., Hayelom M., Kassaye A., Hailesilassie A., Gebrehiwot M., Vanierschot M., 2019, Design, development and CFD modeling of indirect solar food dryer. Energy Procedia, 158, 1128- 1134.
Fantino M., Bichard C., Mistretta F., Bellisle F., 2020, Daily consumption of pistachios over 12 weeks improves dietary profile without increasing body weight in healthy women: A randomized controlled intervention. Appetite, 144, 104483.
Ferziger J.F., Peric M., 2002, Computational methods for fluid dynamics (3rd ed.). New York: Springers publications.
Golpour I., Guine R.P.F., Poncet S., Golpour H., Amirichayjan R., AmiriParian J., 2021, Evaluating the heat and mass transfer effective coefficient during the conductive drying process of paddy. Journal of Food Process Engineering, 13771.
Goyal R.K., Kingsly A.R.P., Manikantan M.R., Ilyas S.M., 2007, Mathematical Modeling of Thin Layer Drying Kinetics of Plum in a Tunnel Dryer. Journal of Food Engineering, 79, 176– 180.
Haghighi K., Irudayaraj J., Stroshine R.L., Sokhansanj S., 1990, Grain Kernel Drying Simulation Using the Finite Element Method. Transactions of the ASAE, 33, 1957– 1965.
Hsu M.H., Mannapruma D., Singh R.P., 1991, Physical and Thermal Properties of Pistachios. Journal of Agricultural Engineering Research, 49, 311- 321.
Izli N., Isik E., 2015, Color and Microstructure Properties of Tomatoes Dried by Microwave, Convective, and Microwave-Convective Methods. International Journal of Food Properties, 18, 241- 249.
Kashaninejad M., Tabil L.G., Mortazavi A., Safekordi A., 2003, Effect of Drying Methods on Quality of Pistachio Nuts. Dry Technology, 21, 821– 838.
Kaveh M., AmiriChayjan R., 2015, Mathematical and Neural Network Modeling of Terebinth Fruit Under Fluidized Bed Drying. Research in Agricultural Engineering, 61(2), 55– 65.
Kaveh M., AmiriChayjan R., 2016, Modeling Thin-Layer Drying of Turnip Slices under Semi-Industrial Continuous Band Dryer. Journal of Food Processing and Preservation, 41(2), 1- 14.
Kaya A., Aydın O., Dincer I., 2006. Numerical Modeling of Heat and Mass Transfer during Forced Convection Drying of Rectangular Moist Objects. International Journal of Heat and Mass Transfer, 49, 3094– 3103.
Kaya A., Aydin O., Dincer I., 2008a, Heat and Mass Transfer Modeling of Recirculating Flows During Air Drying of Moist Objects for Various Dryer Configurations. Numerical Heat Transfer Part A-Applications, 53: 18– 34.
Kaya A., Aydın O., Dincer I., 2008b, Experimental and Numerical Investigation of Heat and Mass Transfer During Drying of Hayward Kiwi Fruits (ActinidiaDeliciosa Planch). Journal of Food Engineering, 88, 323–330.
Kingsly A.R.P., Goyal R.K., Manikantan M.R., Ilyas S.M.,  2007, Effects of Pretreatments and Drying Air Temperature on Drying Behavior of Peach Slice. International Journal of Food Science and Technology, 42: 65- 69.
Kunii D., Levenspiel O., 1991, Fluidisation Engineering, Butterworth-Heinemann.
Kouchakzadeh A., Shafeei S., 2010, Modeling of Microwave-Convective Drying of Pistachios. Energy Conversion and Management, 51: 2012– 2015.
Kowalski S.J., Mierzwa D., 2013, Numerical Dnalysis of Drying Kinetics for Shrinkable Products Such as Fruits and Vegetables. Journal of Food Engineering, 114, 52- 59.
Lindsay Rojas M., Augusto P., 2018, Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT - Food Science and Technology 93, 102- 108.
Mabrouk S.B., Benali E., Oueslati H., 2012, Experimental Study and Numerical Modelling of Drying Characteristics of Apple Slices. Food and Bio products Processing, 90, 719– 728.
Makarichian A., Amiri Chayjan R., Ahmadi E., Mohtasebi S.S., 2021, Assessment the influence of different drying methods and pre-storage periods on garlic (Allium Sativum L.) aroma using electronic nose. Food and Bioproducts Processing, 127, 198- 211.
Malekjani N., Jafari S.M., 2018, Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 78, 206- 223.
Naidu M.M., Vedhashree M., Satapathy P., Khanum H., Ramsamy R., Hebbar H.U., 2016, Effect of Drying Methods on the Quality Characteristics of Dill (Anethumgra-Veolens) Greens. Food Chemistry, 192, 849- 856.
Nguyen T.-D., Nguyen-Quang T., Venkatadri U., Diallo C., Adams M., 2021, Mathematical Programming Models for Fresh Fruit Supply Chain Optimization: A Review of the Literature and Emerging Trends. AgriEngineering3, 519- 541.
Noguera-Artiaga L., Sánchez-Bravo P., Pérez-López D., Szumny A., Calin-Sánchez A., Burgos-Hernández A., Carbonell-Barrachina A., 2020, Volatile, Sensory and Functional Properties of HydroSOS Pistachios. Foods, 92(2), 158.
Norton T., Sun D.W., 2006, Computational fluid dynamics (CFD) an effective design and analysis tool for the food industry: a review. Trends in Food Science and Technology, 17(11), 600– 620.
Norton T., Sun D.W, 2007, An overview of CFD applications in the food industry, chapter 1. In D.-W. Sun (Ed.), Computational fluid dynamics in food processing (pp. 1–43). Boca Raton: CRC Press.
Parlak N., 2015, Fluidized Bed Drying Characteristics and Modeling of Ginger (ZingiberOfficinale) Slices. Heat and Mass Transfer, 51 (8), 1085–1095.
Puma Chandra B., 2017, Introduction to computational fluid dynamics. International Journal of Science and Computing, 3(2), 177- 120.
Quispe-Fuentes I., Vega-Galvez A., Vasquez V., Uribe E., Astudillo S., 2016, Mathematical Modeling and Quality Properties of a Dehydrated Native Chilean Berry. Journal of Food Process Engineering, 32, 56- 69.
Rafiee Sh., Kashaninejad Mahdi., Keyhani A., Jafari A, 2009, Pistachio Nut (Ohadi Variety) Mass Transfer Simulation during Process of Drying Using Finite Element Method. Journal of Agriculture and Science Technology, 11, 137- 146.
Rafiee S., Kashaninejad M., 2005.Transient Moisture Gradients in Pistachio Nut with Finite Element Model during High Temperature Drying. IV International Symposium on Pistachio and Almonds, Book of Abstracts,Tehran, Iran. 22- 25.
Rafiee S., Jafari, A., Kashaninejad M., Omid M., 2007, Experimental and numerical investigations of moisture diffusion in pistachio nuts during drying with high temperature and low relative humidity. International Journal of Agriculture and Biology, 9, 412- 415.
Rafiee S., Kashaninejad M., Tabatabaeefar A., 2005, Transient Moisture Gradients in Wheat (Tagan) Kernel with Finite Element Model. Asia Pacific Drying Conference. December 13-15, Kolkata, India, 732- 740.
Rashidi M., Amiri Chayjan R., Ghasemi A., Ershadi A., 2021, Tomato tablet drying enhancement by intervention of infrared - A response surface strategy for experimental design and optimization. Biosystems Engineering, 208, 199- 212.
Shokraii E.H., Esen A., 1998, Composition, Solubility and Electrophoretic Patterns of Protein Isolated from Kerman Pistachio Nuts (Pistaciavera L.). Journal of Agricultural and Food Chemistry, 36, 425-429.
Shahbazi F., Rahmati S., 2013, Mass modeling of fig (Ficus carica L.) fruit with some physical characteristics. Food Sci Nutr. 1(2), 125- 129.
Silva F.R.G.D., Souza M.D., Costa A.M.D.S.D., Jorge L.M.D.M., Paraíso P.B., 2012, Experimental and Numerical Analysis of Soybean Meal Drying in Fluidized Bed. Powder Technology, 229, 61– 70.
Topuz A., Gur M., ZaferGul M., 2004, An Experimental and Numerical Study of Fluidized Bed Drying of Hazelnuts. Applied Thermal Engineering, 24, 1535– 1547.
USDA Standard. 1990. US Standard for grades of pistachio nuts, Agri Marketing Service, Washington DC, USA.
Vukić M., Janevski J., Vučković G., StojanovićB., Petrović A., 2015, Experimental Investigation of the Drying Kinetics of Corn in a Packed and Fluidized Bed.  Iranian Journal of Chemistry and Chemical Engineering, 34(3), 43-49.
CAPTCHA Image