با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه زراعت- دانشگاه گرگان

3 دانشگاه صنعتی دانمارک

4 دانشگاه علوم پزشکی گلستان

چکیده

هدف این مطالعه استفاده از واکنش میلارد به‌عنوان ابزاری برای گلیکوزیلاسیون پروتئین‌های هیدرولیزشده حاصل از نخود کاجان (Cajanus cajan) و ارزیابی این اصلاح شیمیایی بر ویژگی‌های آنتی‌اکسیدانی و امولسیفایری بود. ویژگی‌های شیمیایی، ترکیب آمینواسیدی و توزیع وزن مولکولی پروتئین‌های هیدرولیزشده موردبررسی قرار گرفت. از گلوکز، گالاکتوز و مالتودکسترین در نسبت‌های 1 به 2، 1 به 1 و 2 به 1 (پروتئین هیدرولیزشده به قند، وزن خشک) برای گلیکوزیلاسیون استفاده شد. فعالیت آنتی‌اکسیدانی از طریق دو آزمون فعالیت مهار رادیکال آزاد ‌1و 1- دی‌فنیل-2- پیکریل هیدرازیل (DPPH) و مهار نیتریک‌اکسید بررسی شد. امولسیون‌ها (روغن/آب) توسط روش سونیفیکاسیون تهیه شدند. توزیع اندازه ذرات و پتانسیل زتا امولسیون‌ها طی 4 روز نگهداری اندازه‌گیری شد. گلیکوزیلاسیون با گلوکز در نسبت 2 به 1 مهار DPPH را از 96/37% به 53/85% و مهار نیتریک‌اکسید را از 50/14% تا 83/54% افزایش داد. همچنین گلیکوزیلاسیون توسط هرکدام از قندها پایداری امولسیون‌ها را افزایش داد و تفاوت معناداری بین نوع قند مورداستفاده مشاهده نشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improvement of antioxidant and emulsifying properties of Cajanus cajan’s protein hydrolysate by glycosylation through maillard reaction

نویسندگان [English]

  • Elham Ranjbar Nedamani 1
  • Alireza Sadeghi Mahoonak 1
  • Mohammad Ghorbani 2
  • Charlotte Jacobsen 3
  • Vahid Khouri 4

1 Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2

3 technical university of Denmark

4 Golestan University of Medical Sciences.

چکیده [English]

The aim of the present study was to use the Maillard reaction as a means to glycosylate protein hydrolysates obtained from Cajanus cajan and to evaluate the effects of this chemical modification on antioxidant and emulsifying properties. Chemical properties, amino acid composition, and molecular weight distribution of the hydrolysates were evaluated. Glucose, galactose, and maltodextrin in the ratios of 1:2, 1:1, and 2:1 (hydrolysate: sugar, dry weight basis) were used for glycosylation. Antioxidant activity was evaluated by 1, 1- diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and nitric oxide scavenging. The sonication technique was used to prepare the (oil/water) emulsions. The droplet size distribution and zeta potential of the emulsions were measured during 4 days of storage. Results showed that glycosylation by glucose in the ratio of 2:1 increased DPPH scavenging activity from 37.96% to 85.53% and nitric oxide inhibition activity from 14.50% to 54.83%. Although glycosylation improved emulsifying stability of glycosylated hydrolysates compared to non-glycosylated hydrolysates, no significant difference was observed between the three examined sugars.

کلیدواژه‌ها [English]

  • Glycosylation
  • Maillard reaction
  • Protein hydrolysate
  • Antioxidant
  • Emulsion
Akintayo, E.T., Oshodi, K.O. & Esuoso, K.O. 1999. Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea (Cajanus cajan) protein concentrates. Food Chemistry, 66: 51-56.
Anzani, C., Álvarez, C., & Mullen, A. M. (2020). Assessing the effect of Maillard reaction with dextran on the techno-functional properties of collagen-based peptides obtained from bovine hides. LWT, 118, 108800.
Association of Official Analytical Chemists, 2005. Official methods of analysis. 18th ed. Washington, DC.
de Queiroz, A.L.M., Bezerra, T., Kênia, A., de Freitas Pereira, S. et al. 2017. Functional protein hydrolysate from goat by-products: Optimization and characterization studies. Food Bioscience, 20: 19-27.
Farvin, S.K.H., Andersen, L.L., Nielsen, H.H., Jacobsen, C., Jakobsen, G., Johansson, I. & Jessen, F. 2014. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 149: 326–334.
FAO (2011) Dietary protein quality evaluation in human nutrition. Report of an FAO Expert ConsultationAuckland, New Zealand, 31 March–2 April.
García-Moreno, P.J., Guadix, A., Guadix, E.M. & Jacobsen, C. 2016. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 203: 124-135.
García-Moreno, P.J, Hansen, E.B., Andersen, M.L., Marcatili, P. & Jacobsen, C. 2018. Physical and oxidative stability of 5% fish oil-in-water emulsions stabilized by potato peptides predicted by bioinformatics. In: 2nd International Symposium on Lipid Oxidation and Antioxidants. Graz, Austria.
Gottardi, P.K., Hong, M., Ndagijimana, M. & Betti, M. 2014. Conjugation of gluten hydrolysates with glucosamine at mild temperatures enhances antioxidant and antimicrobial properties. LWT- Food Science and Technology, 57: 181-187.
Gringer, N., Safafar, H., du Mesnildot, A., Nielsen, H.H., Rogowska-Wrzesinska, A., Undeland, I. & Baron, C.P. 2016. Antioxidative low molecular weight compounds in marinated herring (Clupea harengus) salt brine. Food Chemistry, 194: 1164-1171.
Halim, N.R.A. & Sarbon, N. 2017. A response surface approach on hydrolysis condition of eel (Monopterus Sp.) protein hydrolysate with antioxidant activity. International Food Research Journal, 24(3): 1081-1093.
Hong, P.K., Ndagijimana, M. & Betti, M. 2016. Glucosamine-induced glycation of hydrolysed meat proteins in the presence or absence of transglutaminase: Chemical modifications and taste-enhancing activity. Food Chemistry, 197: 1143–1152.
Hou, L., Wang, J. & Zhang, D. 2013. Optimization of debittering of soybean antioxidanthydrolysates with β-cyclodextrins using response surface methodology. Journal of Food Science and Technology, 50(3):521–527.
Jeewanthi, R.K.C., Lee, N. & Paik, H. 2015. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry. Korean Journal of Food Science Technology, 35(3): 350-359.
Jongh, H.H.J., & Broersen, K. 2012. Application Potential of Food Protein Modification, Advances in Chemical Engineering, In: Zeeshan Nawaz and Shahid Naveed (eds) Advances in Chemical Engineering. London: IntechOpen. 135- 182.
Karnjanapratum, S., Benjakul, S. & O’Brien, N. 2017. Production of Antioxidative Maillard Reaction Products from Gelatin Hydrolysate of Unicorn Leatherjacket Skin. Journal of Aquatic Food Product Technology, 26(2): 148-162.
Kato, A. 2002. Industrial applications of Maillard-type protein– polysaccharide conjugates. Food Science and Technology Resources, 8:193–199.
Kedare, S.B. & Singh, R.P. 2011. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4): 412–422.
Kutzli, I., Weiss, J., & Gibis, M. (2021). Glycation of plant proteins via maillard reaction: reaction chemistry, technofunctional properties, and potential food application. Foods, 10(2), 376.
Lam, R.S.H. & Nickerson, M.T. 2013. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chemistry, 141: 975–984.
Li, W., Zhao, H., He, Z., Zeng, M., Qin, F., Chen, J. 2016. Modification of soy protein hydrolysates by Maillard reaction: Effectsof carbohydrate chain length on structural and interfacial properties. Colloids and Surfaces B: Biointerfaces, 138: 70-77.
Liu, L., Dai, X., Kang, H., Xu, Y. & Hao, W. 2020. Structural and functional properties of hydrolyzed/glycosylatedovalbumin under spray drying and microwave freeze drying. Food Science and Human Wellness, 9: 80-87.
Liu, Q., Kong, B., Han, J., Sun, G., & Li, P. 2014. Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions. Food Structure, 1: 145-154.
Meshginfar, N., Sadeghi-Mahoonak, A., Ziaiifar, A.M., Ghorbani, M. & Kashaninejad, M. 2014. Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology. ARYA Atheroscler, 10(4): 179-84.
Molcahy, E.M., Park, C.W., Drake, M., Mulvihill, D.M., O’Mahony, J.A. 2016. Improvement of the functional properties of whey protein hydrolysate by conjugation with maltodextrin. International Dairy Journal, 60: 47-54.
Ng, K.L., Ayob, M.K., Said, M., Osman, M.A. & Ismail, A. 2013. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Industrial Crops and Products, 43: 725-731.
Niu, L., Jiang, S., Pan, L. & Zhai, Y. 2011. Characteristics and functional properties of wheat germ protein glycated with saccharides through Maillard reaction. International Journal of Food Science Technology, 46: 2197–2203.
Oliver, C.M., Melton, L.D. & Stanley, R.A. 2006. Creating proteins with novel functionality via the Maillard reaction: A review. Critical Reviews in Food Science and Nutrition, 46: 337–350.
Oliviera, F.C., Coimbra, J.S.R,, Oliviera, E.B., Zuniga, D.G. & Rojas, E.E.G. 2016. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 56(7): 1108-1125.
Ovissipour, M., Abedian Kenari, A., Motamedzadegan, A. & Nazari, R.M. 2012 Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2): 696-705.
Rao, M.S., Chawla, S.P., Chander, R. & Sharma, A. 2011. Antioxidant potential of Maillard reaction products formed by irradiation of chitosan–glucose solution. Carbohydrate Polymers, 83: 714–719.
Ru, Q., Cho, Y. & Huang, Q. 2009. Biopolymer-stabilized emulsions on the basis of interactions between b-lactoglobulin and i-carrageenan. Frontiers of Chemical Science and Engineering, 3(4): 399–406.
Sampath Kumar, N.S., Nazeer, R.A. & Jaiganesh, R. 2011. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32(7): 1496-1501.
Saxena, K.B., Ravikoti, V.K. & Sultana, R. 2010. Quality nutrition through pigeon pea-a review. HEALTH 2: 1335-1344.
Shen, Y., Tebben, L., Chen, G. & Li, Y. 2018. Effect of amino acids on Maillard reaction product formation and total antioxidant capacity in white pan bread. Institute of Food Science & Technology, 54: 1372-1380.
Tsai, P.J., Tsai, T.H., Yu CH and Ho SC (2007) Comparison of No-scavenging and NO-suppressing activity of different herbal teas with those of green tea. Food Chemistry, 103: 181-187.
Wang, W.D., Chen, C. & F, X. 2020. Glycation mechanism of lactoferrin–chitosan oligosaccharide conjugates with improved antioxidant activity revealed by high-resolution mass spectroscopy. Food & Function, 11: 10886-10895.
Wang, H.Y., Qian, H. & Yao, W.R. 2011. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128: 573–584.
Wouters, G.B., Rombouts, I., Fierens, E., Brijs, K. & Delcour, J.A. 2016. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Comprehensive Reviews in Food Science and Food Safety, 15(4): 786-800.
Xue, F., Wu, Z., Tong, J., Zheng, J. & Li, C. 2017. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology, and Biochemistry, 81(10): 1891-1898.
Yu, H.C. & Tan, F.J. 2017. Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology. Asian-Australasian Journal of Animal Sciences, 30(11):1612-1619.
Zhang, Q., Wu, C., Fan, G., Li, T. & Sun, Y. 2018. Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction. CYTA-Journal of Food, 16(1): 238-246.
Zou, T.B., He, T.P., Li, H.B., Tang, H.W. & Xia, E.Q. 2016. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 21(1): 72.
CAPTCHA Image