نوع مقاله : کوتاه پژوهشی

نویسندگان

1 گروه فراوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 پژوهشکده اکولوژی دریای خزر، ساری، ایران.

چکیده

از آنجا که فعالیت ضدباکتریایی نایسین در واکنش با پروتئین‌ها، قندها و لیپیدها کاهش می‌یابد، نانوریزپوشانی این نگهدارنده جهت حفاظت از خواص ذاتی آن راه حل مناسبی به‌نظر می‌رسد. هدف تحقیق حاضر تولید نانولیپوزوم‌های حامل نایسین با (و بدون) پوشش کیتوزان و ارزیابی خواص فیزیکی و ضدباکتریایی محصول بود. به همین منظور چهار تیمار شامل NN (نانولیپوزوم‌های حامل نایسین)، NN-CH (0.05)، NN-CH (0.1) و NN-CH (0.5) (نانولیپوزوم‌های حامل نایسین به‌ترتیب با پوشش‌های 05/0، 1/0 و 5/0 درصد کیتوزان) طراحی و مورد آزمون‌های مختلف قرار گرفتند. نتایج نشان داد میانگین سایز ذرات در تیمارهای مختلف از حدود 110 تا 327 نانومتر متغیر است؛ ضمن اینکه با افزایش میزان کیتوزان در پوشش، ذرات بزرگتر شدند (05/0>P). شاخص توزیع اندازه ذره‌ای در تیمارها کمتر از 3/0 ثبت شد و ارتباطی با میزان کیتوزان در پوشش نداشت. با افزایش میزان کیتوزان اطراف نانولیپوزوم‌ها، پتانسیل زتا به صورت معنی‌داری افزایش (05/0>P) و از 34/55- در تیمار NN به 14/53 میلی‌ولت در تیمار NN-CH (0.5) ارتقا یافت. همچنین راندمان ریزپوشانی نیز به صورت معنی‌داری بیشتر شد و از 19/32 در تیمار NN به 14/75 درصد در تیمار NN-CH (0.5) تغییر کرد (05/0>P). مطابق نتایج فعالیت ضدباکتریایی نایسین در دو روش انتشار در محیط کشت آگار و رقیق­سازی در لوله، با نانوریزپوشانی نایسین با (و بدون) پوشش کیتوزان، فعالیت ضدباکتریایی آن بیشتر شد (05/0>P). همچنین با افزایش غلظت کیتوزان، فعالیت ضدباکتریایی نانولیپوزوم‌های حامل افزایش یافت و بیشترین حد آن در تیمار NN-CH (0.5) ثبت گردید (05/0>P). قطر هاله عدم رشد باسیلوس سرئوس در برابر تیمارهای تحقیق (با پنج غلظت 5/2 تا 25 میکروگرم بر میلی‌لیتر) از حدود 5/4 تا 5/17 میلی‌متر متغیر بود. این میزان برای استافیلوکوکوس اورئوس حدود 1/2 تا 5/26 میلی‌متر ثبت شد. حداقل غلظت مهارکنندگی (MIC) و حداقل غلظت کشندگی (MBC) تیمارهای تحقیق برای باسیلوس سرئوس به‌ترتیب در بازه 100 تا 400  و 200 تا 500 میکروگرم بر میلی‌لیتر قرار داشت. این دو غلظت برای استافیلوکوکوس اورئوس به‌ترتیب 50 تا 200 و 100 تا 400 میکروگرم بر میلی‌لیتر ثبت گردید. مطابق یافته‌ها، نانوریزپوشانی نایسین در قالب نانولیپوزوم‌های حامل با پوشش کیتوزان موجب ارتقای خواص فیزیکی و ضدباکتریایی آن می‌شود.

کلیدواژه‌ها

  1. Alboghbeish, H., and Khodanazary, A. (2017). Comparative effects of chitosan and nanochitosan coatings enriched with green tea (Camellia sinensis) extract on quality of Costal trevally fish (Carangoides coeruleopinnatus) during refrigerated storage. Iranian Scientific Fisheries Journal, 26 (5), 95-109. [In Persian].
  2. Bang, S. H., Hwang, I. C., Yu, Y. M., Kwon, H. R., Kim, D. H., and Park, H. J. (2011). Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation28(7), 595-604.
  3. Begde, D., Bundale, S., Mashitha, P., Rudra, J., Nashikkar, N., and Upadhyay, A. (2011). Immunomodulatory efficacy of nisin, a bacterial lantibiotic peptide. Journal of Peptide Science17(6), 438-444. https://doi.org/10.1002/psc.1341
  4. Benech, R. O., Kheadr, E. E., Laridi, R., Lacroix, C., and Fliss, I. (2002). Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and Environmental Microbiology68(8), 3683-3690.
  5. Cheikhyoussef, A., Pogori, N., Chen, W., and Zhang, H. (2008). Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. International Journal of Food Microbiology125(3), 215-222. https://doi.org/10.1016/j.ijfoodmicro.2008.03.012
  6. Chollet, E., Sebti, I., Martial-Gros, A., and Degraeve, P. (2008). Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity. Food Control19(10), 982-989. https://doi.org/10.1016/j.foodcont.2007.10.005
  7. Da Rosa Zavareze, E., Telles, A. C., El Halal, S. L. M., da Rocha, M., Colussi, R., de Assis, L. M., ... and Prentice-Hernández, C. (2014). Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Science and Technology59(2), 841-848.
  8. Da Silva Malheiros, P., Daroit, D. J., and Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology21(6), 284- 292. https://doi.org/10.1016/j.tifs.2010.03.003
  9. Drusch, S., Serfert, Y., Berger, A., Shaikh, M. Q., Rätzke, K., Zaporojtchenko, V., and Schwarz, K. (2012). New insights into the microencapsulation properties of sodium caseinate and hydrolyzed casein. Food Hydrocolloids27(2), 332-338. https://doi.org/10.1016/j.foodhyd.2011.10.001
  10. Fang, Z., and Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology21(10), 510-523. https://doi.org/10.1016/j.tifs.2010.08.003
  11. Ghorbanzadeh, T., Jafari, S. M., Akhavan, S., and Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry216, 146-152. https://doi.org/10.1016/j.foodchem.2016.08.022
  12. Hamidi, M., Mousavi Nasab, D., Ahmadi, N., Basati, Gh., Aolad, G., Salimian, J., and Zargar, M. (2012). Synthesis of antimicrobial peptides in bacteria. Scientific Journal of Ilam University of Medical Sciences, 20 (4), 158-170. [In Persian].
  13. Hasani, Sh., Shahidi, M., and Ojagh. M., (2018). The production and evaluation of nanoliposomes containing bioactive peptides derived from fish wastes using the alkalase enzyme. Research and Innovation in Food Science and Industry, 8 (1), 31-44. [In Persian].
  14. Henriksen, I., Smistad, G., and Karlsen, J. (1994). Interactions between liposomes and chitosan. International journal of pharmaceutics101(3), 227-236. https://doi.org/10.1016/0378-5173(94)90218-6
  15. Hsieh, Y. F., Chen, T. L., Wang, Y. T., Chang, J. H., and Chang, H. M. (2002). Properties of liposomes prepared with various lipids. Journal of Food Science67(8), 2808-2813.
  16. Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C., and Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal13(4), 325-336. https://doi.org/10.1016/S0958-6946(02)00194-2
  17. Li, Z., Paulson, A. T., and Gill, T. A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods19, 733-743. https://doi.org/10.1016/j.jff.2015.09.058
  18. Liu, W., Ye, A., Liu, W., Liu, C., Han, J., and Singh, H. (2015). Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry175, 16-24. https://doi.org/10.1016/j.foodchem.2014.11.108
  19. Mosquera, M., Giménez, B., da Silva, I. M., Boelter, J. F., Montero, P., Gómez-Guillén, M. C., and Brandelli, A. (2014). Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry156, 144-150. https://doi.org/10.1016/j.foodchem.2014.02.011
  20. Mozafari, M. R., Flanagan, J., Matia‐Merino, L., Awati, A., Omri, A., Suntres, Z. E., and Singh, H. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture86(13), 2038-2045. https://doi.org/10.1002/jsfa.2576
  21. No, H. K., Lee, S. H., Park, N. Y., and Meyers, S. P. (2003). Comparison of physicochemical, binding, and antibacterial properties of chitosans prepared without and with deproteinization process. Journal of Agricultural and food Chemistry51(26), 7659-7663.
  22. Nowzari, F., Shábanpour, B., and Ojagh, S. M. (2013). Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chemistry141(3), 1667-1672. https://doi.org/10.1016/j.foodchem.2013.03.022
  23. Ojagh, S. M., Rezaei, M., Razavi, S. H., and Hosseini, S. M. H. 2010. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry120(1), 193-198. https://doi.org/10.1016/j.foodchem.2009.10.006
  24. Paomephan, P., Assavanig, A., Chaturongakul, S., Cady, N. C., Bergkvist, M., and Niamsiri, N. (2018). Insight into the antibacterial property of chitosan nanoparticles against Escherichia coli and Salmonella Typhimurium and their application as vegetable wash disinfectant. Food Control86, 294-301. https://doi.org/10.1016/j.foodcont.2017.09.021
  25. Ramezanzade, L., Hosseini, S. F., and Nikkhah, M. (2017). Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry234, 220-229. https://doi.org/10.1016/j.foodchem.2017.04.177
  26. Rasti, B., Jinap, S., Mozafari, M. R., and Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry135(4), 2761-2770. https://doi.org/10.1016/j.foodchem.2012.07.016
  27. Reyhani Poul, S., and Jafarpour, A. (2020). Effect of edible active film of chitosan containing fish protein hydrolysate (FPH) on chemical and microbial properties of rainbow trout (Oncorhynchus mykiss) fillets during the refrigerated storage. Iranian Food Science and Technology Research Journal, 16 (4), 493-505. [In Persian].
  28. Romero-Pérez, A., García-García, E., Zavaleta-Mancera, A., Ramírez-Bribiesca, J. E., Revilla-Vázquez, A., Hernández-Calva, L. M., ... and Cruz-Monterrosa, R. G. (2010). Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Veterinary Research Communications34(1), 71-79. https://doi.org/10.1007/s11259-009-9335-z
  29. Sadeghian, Y., Sadeghi, A.R., Ghorbani, M., Alami, M., and Joshaghani, H. (2019). Investigation of the physical, chemical and antioxidant properties of nanoliposomes loaded with quinoa seed hydrolyzed proteins. Iranian Journal of Nutrition Sciences & Food Technology, 15 (2), 71-82. [In Persian].
  30. Safari, R., Raftani Amiri, Z., and Esmaeilzadeh Kenari, R. (2018). Optimizing the extraction of phycocyanin pigment from Spirulina platensis algae and investigating the qualitative properties of the encapsulated pigment. PhD thesis, Sari Agricultural Sciences and Natural Resources University. [In Persian].
  31. Sarada, R. M. G. P., Pillai, M. G., and Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry34(8), 795-801. https://doi.org/10.1016/S0032-9592(98)00153-8
  32. Sitohy, M., Osman, A., Ghany, A. G. A., and Salama, A. (2015). Antibacterial phycocyanin from Anabaena oryzae SOS13. International Journal of Applied Research in Natural Products8(4), 27-36.
  33. Tan, C., Xia, S., Xue, J., Xie, J., Feng, B., and Zhang, X. (2013). Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. Journal of Agricultural and Food Chemistry61(34), 8175-8184.
  34. Wald, M., Schwarz, K., Rehbein, H., Bußmann, B., and Beermann, C. (2016). Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chemistry205, 221-228. https://doi.org/10.1016/j.foodchem.2016.03.002
  35. Watanabe, N., Kamei, S., Ohkubo, A., Yamanaka, M., Ohsawa, S., Makino, K., and Tokuda, K. (1986). Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clinical Chemistry32(8), 1551-1554.
  36. Xia, S., Xu, S., and Zhang, X. (2006). Optimization in the preparation of coenzyme Q10 nanoliposomes. Journal of Agricultural and Food Chemistry54(17), 6358-6366.
  37. Yeganeh, S., and Reyhani Poul. (2021). Nanoencapsulation of bioactive peptides from shrimp wastes enzymatic hydrolysis with combined coating of nanoliposome -chitosan and evaluation of antibacterial, antioxidant and antihypertensive activity of the product. Iranian Scientific Fisheries Journal, 30 (6), 83-95. [In Persian].
  38. Zaerzadeh, E., Mortazavi, A., Jafari, M., Afsharnejad, S., Tabatabaii, F., and Nassiri, M. (2011). Antibacterial effect of nanoencapsulated nisin in liposoms in contrast to free nisin in control of Listeria monocytogenes in iranian feta cheese (UF). Iranian Food Science and Technology Research Journal, 7 (3), 191-199. [In Persian].
CAPTCHA Image