نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 گروه مهندسی علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

چکیده

استفاده از پوشش­های خوراکی طبیعی برای افزایش عمر پس از برداشت محصولاتی همانند میوه­ها، امروزه بسیار متداول شده است. کیتوزان با قابلیت کنترل میکروارگانیسم‏های بیماری‏زا و کاهش سرعت تبخیر و تعرق آب از بافت گیاه، به عنوان یک ماده غیرسمی طبیعی و یک پوشش خوراکی طبیعی شناخته شده است. این پژوهش، با هدف بررسی اثر تیمار کیتوزان (صفر، 25/0، 5/0 و 1 درصد) و زمان انبارمانی (صفر، 20، 40 و 60 روز) بر حفظ کیفیت و عمر انبارمانی میوه انگور رقم فخری، به‏صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار انجام شد. شاخص‏های مورد ارزیابی شامل درصد کاهش وزن، درصد آلودگی، درصد ریزش حبه، میزان قهوه‏ای شدن حبه، اسیدآسکوربیک، اسیدیته قابل تیتراسیون، فنل کل، میزان فعالیت آنزیم‏های فنیل‏آلانین‏آمونیالیاز، پلی‏فنل‏اکسیداز و پراکسیداز بود. نتایج نشان داد که غلظت 1 درصد کیتوزان به‏خوبی توانست آلودگی، ریزش حبه، کاهش اسیدیته قابل تیتراسیون و کاهش اسیدآسکوربیک را کنترل نماید و بیش‏ترین میزان فعالیت آنزیم پلی‏فنل‏اکسیداز در غلظت 1 درصد کیتوزان مشاهده گردید و غلظت 5/0 درصد کیتوزان نیز سبب جلوگیری از کاهش وزن و قهوه‏ای شدن حبه‏ها نسبت به سایر غلظت‏ها و نمونه شاهد گردید و بیش‏ترین میزان فنل کل و  بالاترین میزان فعالیت آنزیم فنیل‏آلانین‏آمونیالیاز و پراکسیداز نیز مربوط به غلظت 5/0 درصد کیتوزان بود، این در حالی است که بین دو غلظت 5/0 و 1 درصد کیتوزان در بیش‏تر صفات تفاوت معنی‏داری در سطح 5 درصد مشاهده نشد.

کلیدواژه‌ها

موضوعات

  1. Ardakani, M.D., Mostofi, Y. & Hedayatnejad, R. (2009). Study on the effects of chitosan in preserving some qualitative factors of table grape (Vitis vinifera 'Shahroudi'). VI International Postharvest Symposium 877: 739-742.‏ https://doi.org/17660/ActaHortic.2010.877.97.
  2. Adriano, S., Bartolomeo, D., Cristos, X., & Andras, M. (2005). Antioxidant defenses in Olive trees during drought stress: changes in activiting of some antioxidant enzymes. Functional Plant Biology 32: 45-53. https://doi.org/10.1071/FP04003.
  3. Barakat, M.Z., Shahab, S.K., Darwish, N., & El-Zoheiry, A. (1973). A new titrimetric method for the determination of vitamin C. Analaytical Biochemistry 53: 245-251.
  4. Barzaman, M., Mirdehgan, S.H., & Nazoori, F. (2018). Combined application of polyamines and chitosan on bioactive compound and browning of fresh pistachio. Nutrition Science and Food Technology 15(81): 357-374. (In Persian)
  5. Benhamou, N., Lafontaine, P.J., & Nicole, M. (1994). Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84: 1432-1444.
  6. Chen, S., Zhang, M., & Wang, S. (2010). Physiological and quality responses of Chinese ‘Suli’pear (Pyrus bretschneideri Rehd) to 1‐MCP vacuum infiltration treatment. Journal of the Science of Food and Agriculture 90(8): 1317-1322. https://doi.org/10.1002/jsfa.3939.
  7. De Oliveira, I.R., Crizel, G.R., Severo, J., Renard, C.M., Chaves, F.C., & Rombaldi, C.V. (2016). Preharvest UV-C radiation influences physiological, biochemical and transcriptional changes in strawberry cv. Camarosa. Plant Physiology and Biochemistry 108: 391-399. https://doi.org/10.1016/j.plaphy.2016.08.012.
  8. Djuoa, T., Charles, F., Freire, J.M., Filgueiras, H., Marie-Noello, D., & Sallanon, H. (2010). Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera Indica). International Journal of Food Science and Technology 45: 849-855. https://doi.org/10.1111/j.1365-2621.2010.02209.x.
  9. Dutta, P., Tripathi, S., Mehrotra, G., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry 114(4): 1173-1182. https://doi.org/10.1016/j.foodchem.2008.11.047.
  10. Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impaect of exogenouse salicylice acid on the growth antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae 113:120-128. https://doi.org/10.1016/j.scienta.2007.03.012.
  11. Fujita, N., Tanaka, E., & Murata, M. (2006). Cinnamaldehyde inhibits phenylalaninc ammonia-lyase and enzymatic browning of cut lettuce. Bioscience, Biotechnology, and Biochemistry 70(3): 672-676. https://doi.org/10.1271/bbb.70.672.
  12. Ghasemi Tavalei, M., Ramin, A.A., & Amini, F. (2015). The effect of chitosan edible coating on quality and extension of postharvest life of cucumber in Zomorod. Production and Processing of Crops and Horticulture 5(15): 197-189.
  13. Ghasemnezhad, M., Shiri, M.A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca) during cold storage. Environmental Science 8: 25-33.
  14. Gil, M., Aguayo, E., & Kader, A.A. (2006). Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. Journal of Agricultural and Food Chemistry 54(1): 96-4284. https://doi.org/10.1021/jf060303y.
  15. Hajitaghilo, R., Jalili Marandi, R., Asghari, M.R., & Hemmaty, S. (2017). Effects of postharvest treatment with chitosan and salicylic acid on fungal decay caused by Botrytis cinerea and quality of rishbaba table grape (Vitis vinifera ). Research in Pomology 2(1): 15-30. (In Persian)
  16. Hernandez-Munos, P., Almenar, E., Del Valle, V., Velez, D., & Gavaara, R. (2008). Effect of chirosan coating combined with postharvest calcium treatment on strawberry (Fragaria ananassa) quality during refrigerated storage. Food Chemistry 110: 428-435. https://doi.org/10.1016/j.foodchem.2008.02.020.
  17. Jiang, Y., & Li, Y. (2001). Effects of chitosan on postharvest life and quality of longan fruit, Food Chemistry 73: 139-143. https://doi.org/10.1016/S0308-8146(00)00246-6.
  18. Lerdthanangkul, S., & Kroctha, J.M. (1996). Edible coating effects on postharvest quality of green bell peppers. Journal of Food Science 61: 176-179. https://doi.org/10.1111/j.1365-2621.1996.tb14753.x.
  19. Liu, H.F., Wu, B.H., Fan, P.G., Xu, H.Y., & Li, S.H. (2007). Inheritance of sugars and acids in berries of grape. Euphytica 153: 99-107.
  20. Mayer, A.M. (1987). Polyphenol oxidase and peroxidase in plants recent progress. Phytochemistry 26: 11- 20.
  21. Meidani, J., & Hashemi Dezfouli, A.A. (1997). Postharvest physiology. Publication of Agriculture Education in Karaj, P. 403.
  22. Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry 106(2): 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012.
  23. Mirdehghan, S.H., & Rahimi, S. (2016). Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera) quality during postharvest period. Food Chemistry 196: 1040-1047. https://doi.org/10.1016/j.foodchem.2015.10.038.
  24. Mostofi, Y., Dehestani Ardakani, M., & Razavi, S.H. (2011). The effect of chitosan on postharvest life extension and qualitative characteristics of table grape “Shahroodi”. Journal of Food Science and Technology 8(31): 93-104.
  25. Nath, K., Solanky, K.U., Mahatma, M.K., Madhubala, S.R., & Rakesh, M. (2015). Role of total soluble sugar, phenols and defense related enzymes in relation to Banana fruit rot by Lasiodiplodia Theobromae [(Path.) Griff. and Maubl.] during ripening. Journal of Plant Pathology and Microbiology 6(299): 2-8.‏
  26. Nejatian, M.A., & Doulati Baneh, H. (2016). Identification, distinctness and registration of commercial and native grape cultivars of Iran. Iranian Journal of Horticultural Science 47(3): 581-594.
  27. Ozgur, A., Gabler, K., Mansour, M., & Smilanick, L. (2004). Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biology and Technology 34(2): 169-177. https://doi.org/10.1016/j.postharvbio.2004.05.003.
  28. Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6): 1457-1465. https://doi.org/10.1021/bm034130m.
  29. Scalzo, R.L., Iannoccari, T., Summa, C., Morelli, R., & Rapisarda, P. (2004). Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Journal of Agricultural and Food Chemistry 85(1): 41-47. https://doi.org/10.1016/j.foodchem.2003.05.005.
  30. Sekoba, E. (2014). Influence of postharvest chitosan and nano silica coating application on preservation of fruit quality and shelf life of grape cv. Bedaneh -Sefid. Master's degree in horticulture. University Zanjan, P. 36.
  31. Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine 4: 359-367. https://doi.org/10.12980/APJTB.4.2014C1030.
  32. Xing, Y., Xu, Q., Li, X., Chen, C., Ma, L., Li, S., & Lin, H. (2016). Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. International Journal of Polymer Science 1-24.‏ https://doi.org/10.1155/2016/4851730.
  33. Xu, W.T., Huang, K.L., Guo, F., Qu, W., Yang, J.J., Liang, Z.H., & Luo, Y.B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology 46(1): 86-94. https://doi.org/10.1016/j.postharvbio.2007.03.019.

 

CAPTCHA Image