نوع مقاله : مقاله پژوهشی فارسی
نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 مرکز تحقیقات سلامت فراوردههای غذایی، دارویی و طبیعی، دانشگاه علوم پزشکی گلستان، گرگان، ایران.
3 دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
ارزیابی خصوصیات ضدمیکروبی و پروبیوتیکی فلورمیکروبی جدا شده از شبه غلات تخمیرشده جهت تامین کشتهای میکروبی همراه و آغازگر از اهمیت بهسزایی برخوردار است. در این پژوهش، مخمر غالب از خمیرترش باکویت، جداسازی و با استفاده از PCR شناسایی گردید. سپس ویژگیهای پروبیوتیکی و همچنین اثر ضدقارچی این جدایه مخمری بر روی Aspergillus niger وAspergillus flavus مورد مطالعه قرارگرفت. توالییابی محصولات PCR منجر به شناسایی مخمر Pichia kudriavzevii بهعنوان جدایه مخمری خمیرترش باکویت شد. نرخ زندهمانی جدایه مذکور پس از تیمار متوالی اسید و صفرا در مقایسه با نمونه شاهد 26/79 درصد بود. همچنین اثر ضدباکتریایی آن در برابر Escherichia coli نسبت به سایر عوامل غذازاد مورد مطالعه به شکل معنیداری (05/0p<) بیشتر بود. با این حال، رشد Listeria monocytogenes در حضور جدایه مخمری 50/19 درصد کاهش یافت اما این جدایه، اثر بازدارندهای بر Salmonella entrica نداشت. قابلیتهای آبگریزی و خوداتصالی جدایه مذکور نیز بهترتیب، 07/64 و 40/67 درصد تعیین گردید. علاوه بر این، جدایه مخمری نسبت به تمامی آنتیبیوتیکهای مورد بررسی، مقاومت نشان داد اما در برابر آنتیمایکوتیکهای کتوکونازول و فلوکونازول، مقاوم و همچنین نسبت به ایتراکونازول دارای حساسیت نسبی بود. این جدایه مخمری، فاقد فعالیت همولیتیکی بود و اثر ضدقارچی آن در برابر A. niger و A. flavus نیز مورد تایید قرار گرفت. بر این اساس، جدایه P. kudriavzevii از قابلیت مناسبی برای استفاده بهعنوان کشت پروبیوتیک و یا محافظت کننده در صنایع تخمیری برخوردار میباشد.
کلیدواژهها
موضوعات
- AACC, International. (2010). Approved methods of the American association of cereal chemists. 11th Ed. The St. Paul.
- Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N. A., Latif, M. S. Z., Randhava, M. A. (2014). Phytochemicals and biofunctional properties of buckwheat. a review. The Journal of Agricultural Science, 152 (3), 349–369. https://doi.org/10.1017/S0021859613000166
- Andrabi, S. T., Bhat, B., Gupta, M., Bajaj, B. K. (2016). Phytase-producing potential and other functional attributes of lactic acid bacteria isolates for prospective probiotic applications. Probiotics and Antimicrobial Proteins, 8(3), 121-129. https://doi.org/10.1007/s12602-016-9220-3
- Angelov, A., Gotcheva, V., Hristozova, T., Gargova, S. (2005). Application of pure and mixed probiotic lactic acid bacteria and yeast cultures for oat fermentation. Journal of the Science of Food and Agriculture, 85 (12), 2134–2141. https://doi.org/10.1002/jsfa.2223
- Angmo, K., Kumari, A., Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Science and Technology, 66, 428-435. https://doi.org/10.1016/j.lwt.2015.10.057
- Arroyo López, F. N., Romero Gil, V., Bautista Gallego, J., Rodriguez Gomez, F., Jimenez Diaz, R., García García, P., Garrido Fernandez, A. (2012). Potential benefits of the application of yeast starters in table olive processing. Frontiers in Microbiology, 3, 161. https://doi.org/10.3389/fmicb.2012.00161
- Bajaj, B. K., Claes, I. J., Lebeer, S. (2021). Functional mechanisms of probiotics. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 321-327.
- Banik, A., Mondal, J., Rakshit, S., Ghosh, K., Sha, S. P., Kumar, Halder, S., Ghosh, C., Mondal, K. C. (2019). Amelioration of cold-induced gastric injury by a yeast probiotic isolated from traditional fermented foods. Journal of Functional Foods, 59, 164–173. https://doi.org/10.1016/j.jff.2019.05.039
- Banu,, Vasilean, I., Aprodu, I. (2011). Effect of select parameters of the sourdough rye fermentation on the activity of some mixed starter cultures. Food Biotechnology, 25(4), 275-291. https://doi.org/10.1080/08905436.2011.617251
- Bevilacqua,, Corbo, M. R., Sinigaglia, M. (2012). Selection of yeasts as starter cultures for table olives: a step-by-step procedure. Frontiers in Microbiology, 3, 1-9. https://doi.org/10.3389/fmicb.2012.00194
- Chelliah, R., Ramakrishnan, S. R., Prabhu, P. R., Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild‐strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385-401. https://doi.org/10.1002/yea.3181
- Czerucka, D., Piche, T., Rampal, P. (2007). Review article: Yeast as probiotics: Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 26(6), 767-778. https://doi.org/10.1111/j.1365-2036.2007.03442.x
- De Vuyst, L., Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1-3), 43-56. https://doi.org/10.1016/j.tifs.2004.02.012
- Fadda, M. E., Mossa, V., Deplano, M., Pisano, M. B., Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT-Food Science and Technology, 75, 100-106. https://doi.org/10.1016/j.lwt.2016.08.020
- Fakruddin, M. D., Nur Hossain, M. D., Ahmed, M. M. (2017). Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic, BMC Complementary and Alternative Medicine, 17(1), 1-11. https://doi.org/10.1186/s12906-017-1591-9
- Fekri, A., Torbati, M. A., Yari Khosrowshahi, A., Bagherpour Shamlood, H., Azadmard- Damirchi, S. (2020). Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chemistry, 306, 125620. https://doi.org/10.1016/j.foodchem.2019.125620
- Fernandez-Pacheco, P., Arevalo-Villena, M., Bevilacqua, A., Corbo, M., Beriones Perez, A. (2018). Probiotic characterization in Saccharomyces cerevisiae strains: application in food industries. LWT-Food Science and Technology, 97, 332-340. https://doi.org/10.1016/j.lwt.2018.07.007
- García-Hernández, Y., Rodríguez, Z., Brandão, L. R., Rosa, C. A., Nicoli, J. R., Iglesias, A. E., Pérez-Sanchez, T., Salabarría, R. B., Halaihel, N. (2012). Identification and in vitro screening of avian yeasts for use as probiotic. Research in Veterinary Science, 93(2), 798-802. https://doi.org/10.1016/j.rvsc.2011.09.005
- Gil-Rodriguez, A. M., Carrascosa, A. V., Requena, T. (2015). Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, 64(2), 1156-1162. https://doi.org/10.1016/j.lwt.2015.07.042
- Goretti, M., Turchetti, B., Buratta, M., Branda, E., Corazzi, l., Vaughan-Martini, A., Buzzini, P. (2009). In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. International Journal of Food Microbiology, 131(2-3), 178–182. https://doi.org/10.1016/j.ijfoodmicro.2009.02.013
- Greppi, A., Krych, L., Costantini, A., Rantsiou, K., Hounhouigan, D. J., Arneborg, N. (2015). Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii International Journal of Food Microbiology, 205, 81–89. https://doi.org/10.1016/j.ijfoodmicro.2015.04.011
- Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.P., Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169-177. https://doi.org/10.1016/j.fm.2016.09.016
- Hammes, W. P., Brandt, M. J., Francis, K. L., Rosenheim, J., Seitter M. F., Vogelmann, S. A. (2005). Microbial ecology of cereal fermentations. Trends in Food Science & Technology, 16(1-3), 4-11. https://doi.org/10.1016/j.tifs.2004.02.010
- Ilavenil, S., Vijayakumar, M., Kim, D. H., Valan Arasu, M., Park, H. S., Ravikumar, S., Choi, K. C. (2016). Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC‐23 isolated from Italian ryegrass. Journal of the Science of Food and Agriculture, 96(2), 593-601. https://doi.org/10.1002/jsfa.7128
- Janković, T., Frece, J., Abram, M., Gobin, I. (2012). Aggregation ability of potential probiotic Lactobacillus plantarum International Journal of Sanitary Engineering Research, 6(1), 19-24.
- Kanafani, Z. A., Perfect, j. R. (2014). Resistance to Antifungal Agents: Mechanisms and Clinical Impact. Clinical Infectious Diseases, 46(1), 120-128. https://doi.org/10.1086/524071
- Kapetanakou, A. E., Kollias, J. N., Drosinos, E. H., Skandamis, P. N. (2012). Inhibition of carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. International Journal of Food Microbiology, 152(3), 91–99. https://doi.org/10.1016/j.ijfoodmicro.2011.09.010
- La Penna, M., Nesci, A., Etcheverry, (2004). In vitro studies on the potential for biological control on Aspergillus section Flavi by Kluyveromyces spp. Letters in Applied Microbiology, 38(4), 257–264. https://doi.org/10.1111/j.1472-765X.2003.01467.x
- Magliani, W., Conti, S., Frazzi, R., Ravanetti, L., Maffei, D. L., Polonelli, L. (2005). Protective antifungal yeast killer toxin-like antibodies. Current Molecular Medicine, 5(4), 443-452. https://doi.org/10.2174/1566524054022558
- Magnusson, J., Ström, K., Roos, S., Sjögren, J., Schnürer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219(1), 129-135. https://doi.org/10.1016/S0378-1097(02)01207-7
- Maia Danielski, G., Didimo Imazaki, P. H., Daube, G., Ernlund Freitas de Macedo, R., Clinquart, A. (2017). In vitro evaluation of the competing effect of Carnobacterium maltaromaticum isolated from vacuum packed meat against food pathogens. BAMST Symposium: Meet the Belgian Meat Researchers, Melle 7th.
- Marquina, D., Santos, A., Peinado, J. M. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65-71. https://doi.org/10.1007/s10123-002-0066-z
- Montville, T. J., Matthews, K. R. (2012). Physiology, growth, and inhibition of microbes in foods. Food Microbiology, Fundamentals and Frontiers, 1-18. https://doi.org/10.1128/9781555818463.ch1
- Moroni, A., Arendt, E., Dal Bello, F. (2011). Biodiversity of lactic acid bacteria and yeast in spontaneously fermented buckwheat and teff sourdough. Food Microbiology, 28(3), 497-502. https://doi.org/10.1016/j.fm.2010.10.016
- Moroni, A.V., Zannini, E., Sensidoni, G., Arendt, E. K. (2012). Exploitation of buckwheat sourdough for the production of wheat bread. European Food Research and Technology, 235(4), 659-668. https://doi.org/10.1007/s00217-012-1790-z
- Moslehi Jenabian, S., Lindegaard, L., Jespersen, L. (2010). Beneficial effects of probiotic and food borne yeasts on human health. Nutrients, 2(4), 449-473. https://doi.org/10.3390/nu2040449
- Ng, K. R., Lyu, X., Mark, R., Chen, W. N. (2019). Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservatives. Food Chemistry, 270, 123-129. https://doi.org/10.1016/j.foodchem.2018.07.077
- Palla, M., Agnolucci, M., Calzone, A., Giovannetti, M., Di Cagno, R., Gobbetti, M., Rizzello, C. G., Pontonio, E. (2019). Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. International Journal of Food Microbiology, 302, 59-68. https://doi.org/10.1016/j.ijfoodmicro.2018.08.004
- Pedersen, L., Owusu-Kwarteng, J., Thorsen, L., Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144-151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016
- Perricone, M., Bevilacqua, A., Corbo, M., Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26-35. https://doi.org/10.1016/j.fm.2013.08.006
- Rima, H., Steve, L., Ismail, F. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421
- Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., Torres, C. (2006). Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 111(3), 234-240. https://doi.org/10.1016/j.ijfoodmicro.2006.06.007
- Rolim, F. R. L., dos Santos, K. M. O., de Barcelos, S. C., do Egito, A. S., Ribeiro, T. S., da Conceição, M. L. (2015). Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi-hard goat cheese. LWT-Food Science and Technology, 63(2), 807-813. https://doi.org/10.1016/j.lwt.2015.05.004
- Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L., Dolc, P. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525. https://doi.org/10.1016/j.foodres.2018.10.002
- Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1-16. https://doi.org/10.1016/j.lwt.2012.05.014
- Saarela, M., Mogensen, G., Fonden, R., Mättö, J., Mattila-Sandholm, T. (2000). Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology, 84(3), 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
- Sakandar, H. A., Usman, K., Imran, M. (2018). Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir). LWT-Food Science and Technology, 91, 271-277. https://doi.org/10.1016/j.lwt.2018.01.023
- Suvarna, S., Dsouza, J., Ragavan, M. L., Das, N. (2018). Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, 27(3), 745-753. https://doi.org/10.1007/s10068-018-0310-8
- Viljoen, B. C. (2006). Yeast ecological interactions. Yeast'Yeast, Yeast'Bacteria, Yeast'Fungi interactions and yeasts as biocontrol agents. In Yeasts in food and beverages(pp. 83-110). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28398-0_4
- White, T. J., Bruns, T., Lee, S. J. W. T., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 18(1): 315-322.
- Zhu, F., (2016). Chemical composition and health effects of Tartary buckwheat. Food Chemistry, 20, 231-245. https://doi.org/10.1016/j.foodchem.2016.02.050
- Zielinski, H., Szawara-Nowak, D., Baczek, N., Wronkowska, M. (2019). Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chemistry, 271, 291-297. https://doi.org/10.1016/j.foodchem.2018.07.182
- Zullo, B.A., Ciafardini, G. (2019). Evaluation of physiological properties of yeasts strains isolated from olive oil and their in vitro probiotic trait. Food Microbiology, 78, 179-187. https://doi.org/10.1016/j.fm.2018.10.016
ارسال نظر در مورد این مقاله