نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه زیست شناسی دریا،دانشگاه علوم و فنون دریا، دانشگاه هرمزگان، بندرعباس، ایران
2 گروه مهندسی شیمی،دانشکده مهندسی شیمی و نفت، دانشگاه هرمزگان، بندرعباس، ایران
3 گروه زیست شناسی،دانشکده علوم پایه، دانشگاه قم،قم،ایران
چکیده
در میان پلیمرهای زیستی مختلف مورد استفاده برای تهیه فیلم، پلیساکاریدها به دلیل فراوانی و غیر سمی بودن به عنوان اجزای اصلی فیلم بهشمار میآیند. مخلوط آگار با سایر پلیمرها مانند PVA، خواص مکانیکی و زیست تخریبپذیری کامپوزیتهای زیستی بهبود میبخشد. هدف اصلی این پژوهش ساخت بیوپلیمر به منظور کاربرد در صنایع بستهبندی با آگار استخراج شده از ماکروجلبک Acanthophora در ترکیب با پلیمر صنعتی پلیونیلالکل و گلیسرول است. برای ساخت بیوپلیمر آگار، در ابتدا بهینهسازی استخراج پلیمر آگار از ماکروجلبک با روش سدیم هیدروکسید/ گرمادهی انجام ودر مرحله بعد سنجش ترکیبات محلول آگار استخراجی صورت گرفت. سپس برای ساخت کامپوزیت زیستی با روش قالبگیری از گلیسرول (30 درصد وزنی-وزنی) و پلیمر PVA (25 درصد وزنی-وزنی) استفاده شد. نتایج نشان داد که بازده استخراج برای روش پیشتیمار سدیم هیدروکسید/گرمادهی 15 درصد است. آزمون سنجش میزان کل ترکیبات فنلی محلول آگار استخراج شده نشان داد که میزان ترکیبات فنولی محلول آگار 004/0 ± 077/0 بر حسب میلیگرم اسید گالیک/ گرم آگار و میزان پروتئین محلول آگار استخراج شده، حاوی 019/0 ± 040/0 پروتئین بر حسب میلیگرم/میلیلیتر آگار است. نتایج آزمون کشش بیانگر این بود که افزودن گلیسرول به آگار باعث افزایش انعطافپذیری و افزودن پلیمر PVA باعث افزایش در میزان استحکام کششی و بهبود خواص فیزیکی نظیر افزایش درجه تورم، کاهش درصد حلالیت در آب فیلمهای زیستی برپایه آگار میشود. در نهایت نتایج، استفاده از این پوششها جهت بستهبندی میوه و سبزیجات در مناطق گرمسیری با افزایش طول عمر مفید آنها به مدت حداقل تا 5 روز در دمای 25 درجه سانتیگراد تایید میکند.
کلیدواژهها
موضوعات
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.
- Abdullah, A.H.D., Fikriyyah, A.K., Putri, O.D., & Asri, P.P.P. (2019). Fabrication and characterization of poly lactic acid (PLA)-starch based bioplastic composites. IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1016/j.polymertesting.2023.108000
- Arham, R., Salengke, S., Metusalach, M., & Mulyati, M. (2018). Optimization of agar and glycerol concentration in the manufacture of edible film. International Food Research Journal, 25(5), 1845-1851.
- Basumatary, K., Daimary, P., Das, S.K., Thapa, M., Singh, M., Mukherjee, A & .Kumar, S. (2018). Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packaging and Shelf Life, 17, 99-106. https://doi.org/10.1016/j.fpsl.2018.06.003
- da Rocha, M., de Souza, M.M., & Prentice, C. (2018). Biodegradable films: An alternative food packaging [Interview]. Elsevier. https://doi.org/10.1016/B978-0-12-811516-9.00009-9
- Fakhouri, F.M., Costa, D., Yamashita, F., Martelli, S.M., Jesus, R.C., Alganer, K., Collares-Queiroz, F.P., & Innocentini-Mei, L.H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681-689. https://doi.org/10.1016/j.carbpol.2013.03.027
- Fakhouri, F.M., Martelli, S.M., Bertan, L.C., Yamashita, F., Mei, L.H.I., & Queiroz, F.P.C. (2012). Edible films made from blends of manioc starch and gelatin–Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT, 49(1), 149-154. https://doi.org/10.1016/j.lwt.2012.04.017
- Ganesan, A.R., Shanmugam, M., Palaniappan, S., & Rajauria, G. (2018). Development of edible film from Acanthophora spicifera: Structural, rheological and functional properties. Food Bioscience, 23, 121-128. https://doi.org/10.1016/j.fbio.2017.12.009
- Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454. https://doi.org/10.1016/j.foodhyd.2020.106454
- Hasan, M., & Rahmayani, R.F.I., (2018). Bioplastic from chitosan and yellow pumpkin starch with castor oil as plasticizer. IOP Conference Series: Materials Science and Engineering,(Vol. 333,p, 012087). IOP Publishing.
- Hernández, V., Ibarra, D., Triana, J.F., Martínez-Soto, B., Faúndez, M., Vasco, D.A., Gordillo, L., Herrera, F., García-Herrera, C., & Garmulewicz, A. (2022). Agar biopolymer films for biodegradable packaging: A reference dataset for exploring the limits of mechanical performance. Materials, 15(11), 3954. https://doi.org/10.3390/ma15113954
- Hii, S.-L., Lim, J.-Y., Ong, W.-T., & Wong, C.-L. (2016). Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. Journal of Engineering Science and Technology, 11, 1-15.
- Hong, S.-I., Cho, Y., & Rhim, J.-W. (2021). Effect of agar/AgNP composite film packaging on refrigerated beef loin quality. Membranes, 11(10), 750. https://doi.org/10.3390/membranes11100750
- Kumar, S., Boro, J.C., Ray, D., Mukherjee, A., & Dutta, J. (2019). Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6), e01867. https://doi.org/10.1016%2Fj.heliyon.2019.e01867
- Kumar, S., Shukla, A., Baul, P.P., Mitra, A., & Halder, D. (2018). Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging and Shelf Life, 16, 178-184. https://doi.org/10.1016/j.fpsl.2018.03.008
- Kumar, V., & Fotedar, R. (2009). Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydrate Polymers, 78, 813-819. https://doi.org/10.1016/j.carbpol.2009.07.001
- Lee, J.-S., Choi, I., & Han, J. (2021). Mathematical modeling of cinnamon (Cinnamomum verum) bark oil release from agar/PVA biocomposite film for antimicrobial food packaging: The effects of temperature and relative humidity. Food Chemistry, 130306. https://doi.org/10.1016/j.foodchem.2021.130306
- Madera-Santana, T., Freile-Pelegrín, Y., & Azamar-Barrios, J. (2014). Physicochemical and morphological properties of plasticized poly (vinyl alcohol)–agar biodegradable films. International Journal of Biological Macromolecules, 69, 176-184. https://doi.org/10.1016/j.ijbiomac.2014.05.044
- Madera-Santana, T.J., Robledo, D., & Freile-Pelegrín, Y. (2011). Physicochemical properties of biodegradable polyvinyl alcohol–agar films from the red algae Hydropuntia cornea. Marine Biotechnology, 13(4), 793-800. https://doi.org/10.1016/j.ijbiomac.2020.02.158
- Madera‐Santana, T., Misra, M., Drzal, L., Robledo, D., & Freile‐Pelegrin, Y. (2009). Preparation and characterization of biodegradable agar/poly (butylene adipate‐co‐terephatalate) composites. Polymer Engineering & Science, 49(6), 1117-1126. https://doi.org/10.1002/pen.21389
- Marichelvam, M.K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
- Marichelvam, M., Manimaran, P., Sanjay, M., Siengchin, S., Geetha, M., Kandakodeeswaran, K., Boonyasopon, P., & Gorbatyuk, (2022). Extraction and development of starch-based bioplastics from Prosopis juliflora Plant: Eco-friendly and sustainability aspects. Current Research in Green and Sustainable Chemistry, 5, 100296. https://doi.org/10.1016/j.crgsc.2022.100296
- Martínez-Sanz, M., Gómez-Mascaraque, L.G., Ballester, A.R., Martínez-Abad, A., Brodkorb, A., & López-Rubio, A. (2019). Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Research, 38, 101420. https://doi.org/10.1016/j.algal.2019.101420
- Mathew, S., Mathew, J., & Radhakrishnan, E. (2019). Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. Journal of Polymer Research, 26(9), 1-10. https://doi.org/10.1007/s10965-019-1888-0
- Mensi, F. (2019). Agar yield from R-phycoerythrin extraction by-product of the red alga Gracilaria verrucosa. Journal of Applied Phycology, 31(1), 741-75 https://doi.org/10.1007/s10811-018-1533-z.
- Nguyen, T.T., Nguyen, T.-T.H., Pham, B.-T.T., Van Tran, T., Bach, L.G., Thi, P.Q.B., & Thuc, C.H. (2021). Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packaging and Shelf Life, 29, 100740. https://doi.org/10.1016/j.fpsl.2021.100740
- Orsuwan, A., Shankar, S., Wang, L.-F., Sothornvit, R., & Rhim, J.-W. (2016). Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476-485. https://doi.org/10.1016/j.foodhyd.2016.04.017
- Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86(2), 691-699. https://doi.org/10.1016/j.carbpol.2011.05.010
- Rhim, J., Wang, L., & Hong, S. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335. https://doi.org/10.1016/j.foodhyd.2013.04.002
- Samadi, N., Sabzi, M., & Babaahmadi, M. (2018). Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. International Journal of Biological Macromolecules, 107, 2291-2297. https://doi.org/10.1016/j.ijbiomac.2017.10.104
- Sasuga, K., Yamanashi, T., Nakayama, S., Ono, S., & Mikami, K. (2017). Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Research, 26, 123-130. https://doi.org/10.1016/j.algal.2017.07.010
- Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76-84. https://doi.org/10.1016/j.foodhyd.2017.05.002
- Shankar, S., Teng, X., & Rhim, J.-W. (2014). Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing Carbohydrate Polymers, 114, 484-492. https://doi.org/10.1016/j.carbpol.2014.08.036
- Soleimani, S., Yousefzadi, M., Nezhad, S.B.M., Pozharitskaya, O.N., & Shikov, A.N. (2022). Evaluation of fractions extracted from Polycladia myrica: biological activities, UVR protective effect, and stability of cream formulation based on it. Journal of Applied Phycology, 34(3), 1763-1777. https://doi.org/10.1007/s10811-022-02705-2
- Sousa, A. M., Alves, V., Morais, S., Delerue-Matos, C., & Gonçalves, M.P. (2010). Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. Bioresource technology, 101(9), 3258-3267. https://doi.org/10.1016/j.biortech.2009.12.061
- Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Herrmann, C., & Endres, H.-J. (2018) Bio-based plastics-A review of environmental, social and economic impact assessments. Journal of Cleaner Production, 185, 476-491. https://doi.org/10.1016/j.jclepro.2018.03.014
- Sudhakar, M.P., Magesh Peter, D., & Dharani, G. (2021). Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 28(26), 33899-33913. https://doi.org/10.1007/s11356-020-10010-z
- Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S.H., Masruchin, N., Gutari, S., & Kemala, T. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. Journal of Environmental Health Science and Engineering, 19(1), 415-425. https://doi.org/10.1007/s40201-021-00614-z
- Susilawati, S., Rostini, I., Pratama, R.I., & Rochima, E. (2019). Characterization of bioplastic packaging from tapioca flour modified with the addition of chitosan and fish bone gelatin. World Scientific News, 135, 85-98.
- Wongphan, P., & Harnkarnsujarit, N. (2020). Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. International Journal of Biological Macromolecules, 156, 80-93. https://doi.org/10.1016/j.ijbiomac.2020.04.056
- Wulandari, D., Hermiyati, I., Iswahyuni, I., & Tawarniate, A.Z. (2022). Production and characterization of gelatin from rabbit bone as bioplastics material by acid pre-treatment. World Rabbit Science, 30(1): 83-93.
- Yusoff, N.H., Pal, K., Narayanan, T., & de Souza, F.G. (2021). Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. Journal of Molecular Structure, 1232, 129954. https://doi.org/10.1016/j.molstruc.2021.129954
ارسال نظر در مورد این مقاله