نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی ومنابع طبیعی گرگان، گرگان، ایران

چکیده

پپتیدهای زیست‌فعال در واقع بخش‌های پروتئینی خاصی هستند که علاوه ‌بر ارزش غذایی، تأثیرات مثبتی برعملکرد بدن دارند. فراصوت، به­عنوان یک فناوری سبز، و ارزان، به­طور گسترده­ای برای استخراج پروتئین و ترکیبات آنتی­اکسیدانی استفاده می­شود. تیمار با فراصوت باعث تغییر ساختار سه بعدی پروتئین­ها می­شود. در نتیجه، ترکیبی از پیش‌تیمار با فراصوت و هیدرولیز آنزیمی می‌تواند راهی امیدوارکننده برای اصلاح عملکرد پروتئین‌ها باشد. هدف از این پژوهش بررسی اثر زمان هیدرولیز و همچنین تأثیر پیش­تیمار فراصوت بر هیدرولیز آنزیمی پروتئین قارچ دکمه­ای به­وسیله آنزیم پپسین جهت تولید پپتیدهای آنتی­اکسیدان می­باشد. جهت انجام پژوهش ابتدا قارچ به پودر تبدیل و سپس عمل هیدرولیز در زمان­های30-210 دقیقه با نسبت به آنزیم به سوبسترا 1% (وزنی/وزنی نسبت به وزن سوبسترای پروتئینی) و در دمای 40درجه­سانتی­گراد در چهار وضعیت بدون و با پیش­تیمار فراصوت با توان 40، 70 و 100% صورت گرفت. افزایش توان تیمار فراصوت باعث افزایش قابلیت مهار رادیکال­آزاد DPPH، فعالیت شلاته کنندگی یون آهن، ظرفیت آنتی­اکسیدانی­کل و قدرت احیاکنندگی یون آهن در زمان­های هیدرولیز کوتاه­تر گردید. نتایج نشان داد، نمونه­های پیش­تیمار شده با فراصوت با توان 100% نسبت به نمونه­های بدون پیش­تیمار و پیش­تیمار شده با توان40 و 70% بالاترین خاصیت آنتی­اکسیدانی را دارا می­باشند. بنابراین استفاده از پیش­تیمار فراصوت با توان بالا موجب کوتاه نمودن زمان هیدرولیز جهت دستیابی به پپتیدهای با قابلیت آنتی­اکسیدانی بالاتر و افزایش کارآیی هیدرولیز آنزیمی می­گردد. براساس نتایج تیمار فراصوت با توان100% و طی زمان هیدرولیز 60 دقیقه موجب دستیابی محصولی با قابلیت آنتی‌اکسیدانی بالا می­گردد و به‌عنوان تیمارمناسب انتخاب گردید.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abadía-García, L., Castaño-Tostado, E., Ozimek, L., Romero-Gómez, S., Ozuna, C., & Amaya-Llano, S.L. (2016). Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innovative Food Science & Emerging Technologies37, 84-90. https://doi.org/10.1016/j.ifset.2016.08.010
  2. Aderinola, T.A., Fagbemi, T.N., Enujiugha, V.N., Alashi, A.M., & Aluko, R.E. (2019). In vitro antihypertensive and antioxidative properties of alcalase‐derived Moringa oleifera seed globulin hydrolysate and its membrane fractions. Journal of Food Processing and Preservation43(2), e13862. https://doi.org/10.1111/jfpp.13862
  3. Bhat, Z.F., Kumar, S., & Bhat, H.F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377-5392. https://doi.org/10.1007/s13197-015-1731-5
  4. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075
  5. Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry59(6), 2600-2609. https://doi.org/10.1021/jf103771x
  6. Chi, C.F., Hu, F.Y., Wang, B., Li, T., & Ding, G.F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods15, 301-313. https://doi.org/10.1016/j.jff.2015.03.045
  7. Dasgupta, N., & De, B. (2007). Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chemistry101(2), 471-474. https://doi.org/10.1016/j.foodchem.2006.02.003
  8. Ding, Q., Zhang, T., Niu, S., Cao, F., Wu-Chen, R.A., Luo, L., & Ma, H. (2018). Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry42, 704-713. https://doi.org/10.1016/j.ultsonch.2017.11.027
  9. FitzGerald, R.J., & Meisel, H. (2000). Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. British Journal of Nutrition84(S1), 33-37. https://doi.org/10.1017/S0007114500002221
  10. Guerra-Almonacid, C.M., Torruco-Uco, J.G., Murillo-Arango, W., Méndez-Arteaga, J.J., & Rodríguez-Miranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulisEmirates Journal of Food and Agriculture, 288-296. https://doi.org/10.1016/j.ultsonch.2019.104787
  11. He, J. Z., Ru, Q.M., Dong, D.D., & Sun, P.L. (2012). Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules, 17(4), 4373-4387. https://doi.org/10.3390/molecules17044373
  12. Horwitz, W., Chichilo, P., & Reynolds, H. (1970). Official methods of analysis of the Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists.
  13. Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V., & Sharma, A.(2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry121(1), 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027
  14. Je, J.Y., Lee, K.H., Lee, M.H., & Ahn, C.B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International42(9), 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
  15. Kadam, S.U., Tiwari, B.K., Álvarez, C., & O'Donnell, C.P. (2015). Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Science & Technology46(1), 60-67. https://doi.org/10.1016/j.tifs.2015.07.012
  16. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry102(4), 1317-1327. https://doi.org/10.1016/j.foodchem.2006.07.016
  17. Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y., & Schwartz, B. (2012). Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. Journal of Gastroenterology47(5), 504-518. https://doi.org/10.1007/s00535-011-0514-7
  18. Li, X.R., Chi, C.F., Li, L., & Wang, B. (2017). Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage. Marine Drugs15(3), 61. https://doi.org/10.3390/md15030061
  19. Liang, Q., Ren, X., Ma, H., Li, S., Xu, K., & Oladejo, A.O. (2017). Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. Journal of Food Quality2017. https://doi.org/10.1155/2017/2784146
  20. Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A.B., & Kishimura, H. (2011). Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry129(3), 1179-1186. https://doi.org/10.1016/j.foodchem.2011.05.099
  21. Meshginfar, N., Sadeghi, M.A., Ziaiifar, A.M., Ghorbani, M., & Kashaninejad, M. (2014). Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Journal of Food Research, 24(2), 215-225.
  22. Nourmohammadi, E., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M., & Sadeghi, M. (2017). The optimization of the production of anti-oxidative peptides from enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technology Research Journal13(1), 14-26. https://doi.org/22067/ifstrj.v1395i0.45423
  23. Nadeem, M., Ubaid, N., Qureshi, T.M., Munir, M., & Mehmood, A. (2018). Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics Sonochemistry, 45, 1-6. https://doi.org/10.1016/j.ultsonch.2018.02.034
  24. Paisansak, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanata, A. (2020). Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). Journal Food Science and Technology, 58(1), 85–97. https://doi.org/ 10.1007/s13197-020-04517-z
  25. Pan, X., Zhao, Y.Q., Hu, F.Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods25, 220-230. https://doi.org/10.1016/j.jff.2016.06.008
  26. Sun, Q., Shen, H., & Luo, Y. (2011). Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of Food Science and Technology, 21, 6646-6652. https://doi.org/10.1007/s13197-010-0115-0
  27. Vioque, J., Clemente, A., Pedroche, J., Yust, M.D.M., & Millán, F. (2001). Obtención y aplicaciones de hidrolizados proteicos. Grasas y Aceites, 52(2), 132-136. https://doi.org/3989/gya.2001.v52.i2.385
  28. Wali, A., Ma, H., Shahnawaz, M., Hayat, K., Xiaong, J., & Jing, L. (2017). Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates. Journal of Chemistry2017. https://doi.org/10.1155/2017/4373859
  29. Walters, M.E. (2019). Effects of Ultrasonication on the Antioxidant and Anti-diabetic Properties of Hydrolyzed Oat Proteins(Doctoral dissertation, Carleton University). https://doi.org/10.22215/etd/2019-13844
  30. Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., et al. (2018a). Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review. Ultrasonics Sonochemistry, 48, 538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018
  31. Yang, X., Li, Y., Li, S., Oladejo, A. O., Wang, Y., Huang, S., ... & Ye, X. (2017). Effects of low power density multi-frequency ultrasound pretreatment on the enzymolysis and the structure characterization of defatted wheat germ protein. Ultrasonics Sonochemistry38, 410-420. https://doi.org/10.1016/j.ultsonch.2017.03.001
  32. Yu, L., Sun, J., Liu, S., Bi, J., Zhang, C., & Yang, Q. (2012). Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin) antioxidant hydrolysate. International Journal of Molecular Sciences13(7), 9051-9068. https://doi.org/10.3390/ijms13079051
  33. Zhang, Y., Ma, L., Cai, L., Liu, Y., & Li, J. (2017). Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrasonics Sonochemistry36, 88-94. https://doi.org/10.1016/j.ultsonch.2016.11.008
  34. Zhou, C., Hu, J., Yu, X., Yagoub, A.E.A., Zhang, Y., Ma, H., ... & Otu, P.N.Y. (2017). Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT77, 488-496. https://doi.org/10.1016/j.lwt.2016.06.048
  35. Zhu, K.X., Su, C.Y., Guo, X.N., Peng, W., & Zhou, H.M. (2011). Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. International Journal of Food Science & Technology46(5), 1053-1059. https://doi.org/10.1111/j.1365-2621.2011.02585.x
  36. Zhu, L., Chen, J., Tang, X., & Xiong, Y.L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry56(8), 2714-2721. https://doi.org/10.1021/jf703697e
  37. Zou, Y., Yang, H., Li, P.P., Zhang, M. H., Zhang, X.X., Xu, W.M., & Wang, D.Y. (2019). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science98(4), 1925-1933. https://doi.org/10.3382/ps/pey502

 

CAPTCHA Image