نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

نگرانی جهانی در مورد سلامت انسان و افزایش شیوع بیماری‌های مزمن در سال‌های اخیر منجر به افزایش تقاضا برای ترکیبات مغذی مانند کوآنزیم Q10 شده است. حساسیت به گرما و خواص چربی دوست کوآنزیم Q10 استفاده از آن را در غذا محدود می­کند. کپسولاسیون فناوری است که از مواد زیست فعال در برابر شرایط محیطی نامناسب محافظت می­کند و عمر مفید را افزایش می­دهد. هدف از این مطالعه کپسوله‌سازی کوآنزیم Q10 با استفاده از کواسرواسیون مرکب توسط موسیلاژ دانه ژلاتین-ریحان و مشخص کردن خواص فیزیکی، حرارتی و شیمیایی میکروکپسول‌های تولید شده بود. روش سطح پاسخ برای تعیین سطح بهینه چهار متغیر فرمولاسیون برای حداکثر راندمان کپسولاسیون، ظرفیت بارگذاری و کدورت و حداقل جذب مایع رویی استفاده شد. میکروکپسول‌های بهینه دارای راندمان کپسولاسیون 69/83%، ظرفیت بارگذاری 32/16%، کدورت 979/0 و جذب مایع رویی 227/0 بودند. میکروکپسول‌ها با میکروسکوپ الکترونی روبشی، طیف‌سنجی فروسرخ تبدیل فوریه و کالری‌سنجی روبشی تفاضلی ارزیابی شدند. نتایج FTIR تشکیل کواسروات­ها را تایید کرد. ترموگرام نقطه ذوب میکروکپسول بارگذاری شده Q10 در نقطه ذوب آن (50 درجه سلسیوس) به دلیل حلالیت آن در فاز روغن و به تله افتادن مناسب حین کپسولاسیون مشاهده نشد. رفتار رهایش Q10 توسط مدل‌های مختلف ریاضی مورد بررسی قرار گرفت. ریزپوشینه­های Q10 برای غنی­سازی شیر مورد استفاده قرار گرفت و نتایج نشان داد که میکروکپسول‌های پروتئین-کربوهیدرات توسعه یافته را می­توان برای محافظت از ترکیبات آبگریز استفاده کرد.

کلیدواژه‌ها

موضوعات

  1. Ahmadi, N., Nasirpour, A., Sheikhzeinodin, M., & Keramat, J. (2015). Microencapsulation of ubiquinone using complex coacervation for functional yoghurt. Food Science and BiotechnologyBiochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 24(3), 895-904. http://dx.doi.org/10.1007/s10068-015-0116-x
  2. Akhter, M.H., Ahmad, A., Ali, J., & Mohan, G. (2014). Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. Journal of Pharmaceutical Innovation, 9(2), 121-131. http://dx.doi.org/10.1007/s12247-014-9179-0
  3. Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608-616. https://doi.org/10.1016/j.carbpol.2013.09.006
  4. Byeon, J.H., Kang, Y.-R., & Chang, Y.H. (2023). Physicochemical and in vitro digestion properties of gelatin/low-methoxyl pectin synbiotic microgels co-encapsulating Lacticaseibacillus casei and pectic oligosaccharides via double-crosslinking with transglutaminase and calcium ions. Food Hydrocolloids, 142, 108757. https://doi.org/10.1016/j.foodhyd.2023.108757
  5. Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H.B., Pedraza-Chaverri, J., & Ponce-Alquicira, E. (2017). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocolloids, 62, 49-57. https://doi.org/10.1016/j.foodhyd.2016.07.028
  6. Chang, P.G., Gupta, R., Timilsena, Y.P., & Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 191, 58-66. https://doi.org/10.1016/j.jfoodeng.2016.07.008
  7. Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), 455-460. https://doi.org/10.1016/j.jfoodeng.2011.01.011
  8. Duhoranimana, E., Karangwa, E., Lai, L., Xu, X., Yu, J., Xia, S., Zhang, X., Muhoza, B., & Habinshuti, I. (2017). Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism. Food Hydrocolloids, 69, 111-120. https://doi.org/10.1016/j.foodhyd.2017.01.035
  9. Escriva, A., Esteve, M., Farré, R., & Frıgola, A. (2002). Determination of liposoluble vitamins in cooked meals, milk and milk products by liquid chromatography. Journal of Chromatography A, 947(2), 313-318. https://doi.org/10.1016/S0021-9673(01)01618-1
  10. Fonte, P., Soares, S., Costa, A., Andrade, J. C., Seabra, V., Reis, S., & Sarmento, B. (2012). Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter, 2(4), 329-339. https://doi.org/10.4161/biom.23246
  11. Gokce, E.H., Korkmaz, E., Tuncay-Tanrıverdi, S., Dellera, E., Sandri, G., Bonferoni, M.C., & Ozer, O. (2012). A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. International Journal of Nanomedicine, 7, 5109. https://doi.org/10.2147/ijn.s34921
  12. Hamed, S., & Allam, M.A. (2006). Application of FTIR spectroscopy in the determination of antioxidant efficiency in sunflower oil. Journal of Applied Sciences Research, 2(1), 27-33.
  13. Hogan, S.A., McNamee, B.F., O'Riordan, E.D., & O'Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49(4), 1934-1938. https://doi.org/10.1021/jf000276q
  14. Hosseini-Parvar, S., Matia-Merino, L., Goh, K., Razavi, S.M.A., & Mortazavi, S.A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum seed: effect of concentration and temperature. Journal of Food Engineering, 101(3), 236-243. https://doi.org/10.1016/j.jfoodeng.2010.06.025
  15. Hu, R., Dong, D., Hu, J., & Liu, H. (2023). Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocolloids, 138, 108457. https://doi.org/10.1016/j.foodhyd.2023.108457
  16. Ifeduba, E.A., & Akoh, C.C. (2016). Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates. Food Chemistry, 199, 524-532. https://doi.org/10.1016/j.foodchem.2015.12.011
  17. Jain, A., Thakur, D., Ghoshal, G., Katare, O., & Shivhare, U. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8(8), 1635-1644. http://dx.doi.org/10.1007/s11947-015-1521-0
  18. Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125(4), 1267-1272. https://doi.org/10.1016/j.foodchem.2010.10.063
  19. Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42(2), 232-236. https://doi.org/10.1016/j.jpba.2006.03.037
  20. Kavousi, H. R., Fathi, M., & Goli, S. A. (2017). Stability enhancement of fish oil by its encapsulation using a novel hydrogel of cress seed mucilage/chitosan. International Journal of Food Properties, 20(sup2), 1890-1900. https://doi.org/10.1080/10942912.2017.1357042
  21. Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum) gum. Carbohydrate Polymers, 102, 199-206. https://doi.org/10.1016/j.carbpol.2013.10.062
  22. Li, M., Guo, Y., Wei, Y., MacDiarmid, A.G., & Lelkes, P.I. (2006). Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 27(13), 2705-2715. https://doi.org/10.1016/j.biomaterials.2005.11.037
  23. Li, X., Zhang, M., Zhou, L., Liu, J., & Marchioni, E. (2023). Construction of whey protein gels prepared by three methods to stabilize high internal phase Pickering emulsions loaded with CoQ10 under different pH. Food Chemistry, 421, 136192. https://doi.org/10.1016/j.foodchem.2023.136192
  24. Naji-Tabasi, S., Razavi, S.M.A., Mohebbi, M., & Malaekeh-Nikouei, B. (2016). New studies on basil (Ocimum bacilicum L.) seed gum: Part I–Fractionation, physicochemical and surface activity characterization. Food Hydrocolloids, 52, 350-358. https://doi.org/10.1016/j.foodhyd.2015.07.011
  25. Nakagawa, K., & Nagao, H. (2012). Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411, 129-139. https://doi.org/10.1016/j.colsurfa.2012.07.010
  26. Peng, C., Zhao, S.-Q., Zhang, J., Huang, G.-Y., Chen, L.-Y., & Zhao, F.-Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560-568. https://doi.org/10.1016/j.foodchem.2014.05.126
  27. Prata, A.S., & Grosso, C.R. (2015). Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists' Society, 92(7), 1063-1072. http://dx.doi.org/10.1007/s11746-015-2670-z
  28. Rahman, M. S., Al-Saidi, G., Guizani, N., & Abdullah, A. (2010). Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochimica Acta, 509(1-2), 111-119. https://doi.org/10.1016/j.tca.2010.06.011.
  29. Razavi, S.M., Bostan, A., & Rezaie, M. (2010). Image processing and physico‐mechanical properties of basil seed (Ocimum basilicum). Journal of Food Process Engineering, 33(1), 51-64. https://doi.org/10.1111/j.1745-4530.2008.00259.x
  30. Rocha-Selmi, G.A., Theodoro, A.C., Thomazini, M., Bolini, H.M., & Favaro-Trindade, C.S. (2013). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. Journal of Food Engineering, 119(1), 28-32. https://doi.org/10.1016/j.jfoodeng.2013.05.002.
  31. Saeidy, S., Keramat, J., & Nasirpour, A. (2014). Microencapsulation of calcium using water-in-oil-in-water double emulsion method. Journal of Dispersion Science and Technology, 35(3), 370-379. https://doi.org/10.1080/01932691.2013.788453
  32. Sharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., & Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496.
  33. Silva, D., Favaro‐Trindade, C., Rocha, G., & Thomazini, M. (2012). Microencapsulation of lycopene by gelatin–pectin complex coacervation. Journal of Food Processing and Preservation, 36(2), 185-190. https://doi.org/10.1111/j.1745-4549.2011.00575.x.
  34. Swarnakar, N.K., Jain, A.K., Singh, R.P., Godugu, C., Das, M., & Jain, S. (2011). Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials, 32(28), 6860-6874. https://doi.org/10.1016/j.biomaterials.2011.05.079.
  35. Wang, B., Adhikari, B., & Barrow, C.J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365. https://doi.org/10.1016/j.foodchem.2014.02.135
  36. Wang, C., Zhao, R., He, K., Zhang, S., Kemp, A.H., & Guo, M. (2023). Pharmacokinetic profile and sub-chronic toxicity of coenzyme Q10 loaded whey protein nanoparticles. Food Bioscience, 52, 102347. https://doi.org/10.1016/j.fbio.2022.102347
  37. Xiao, Z., Li, W., & Zhu, G. (2015). Effect of wall materials and core oil on the formation and properties of styralyl acetate microcapsules prepared by complex coacervation. Colloid and Polymer Science, 293(5), 1339-1348.
  38. Yang, X., Gao, N., Hu, L., Li, J., & Sun, Y. (2015). Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, 161, 87-93. https://doi.org/10.1016/j.jfoodeng.2015.03.027
  39. Yari, S., Nasirpour, A., & Fathi, M. (2016). Effect of polymer concentration and acidification time on olive oil microcapsules obtained by complex coacervation. Applied Food Biotechnology, 3(1), 53-58. http://dx.doi.org/10.22037/afb.v3i1.10226
  40. Zamarreño, M.D., Pérez, A.S., Pérez, C.G., & Méndez, J.H. (1992). High-performance liquid chromatography with electrochemical detection for the simultaneous determination of vitamin A, D3 and E in milk. Journal of Chromatography A, 623(1), 69-74. https://doi.org/10.1016/0021-9673(92)85300-I
CAPTCHA Image