نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه پژوهشی کیفیت و ایمنی مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی، جهاد دانشگاهی خراسان رضوی، مشهد، ایران
2 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد سبزوار، سبزوار، ایران
3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
رشد روزافزون بیماریهای قلبی عروقی، فشار خون بالا، سفت شدن دیواره رگها و همچنین چاقی در بسیاری از کشورها، پنیر پیتزای کمچرب و کمسدیم را به یکی از موضوعات مورد مطالعه در سراسر جهان تبدیل کرده است. اثرات چهار متغیر مستقل شامل اینولین (025/0-0 درصد)، نشاسته پیشژلاتینه (5/0- 0 درصد)،NaCl (1-35/0 درصد) وKCl (1-35/0 درصد) مورد بررسی قرار گرفت. محتوای چربی پنیر پیتزای تقلیدی با افزایش سطوح جایگزینی اینولین و نشاسته بهطور قابل توجهی به 91/11 درصد کاهش یافت (05/0 > P). همچنین مقادیر رطوبت و pH آن بهطور معنیداری متفاوت بود (05/0> p). افزایش سطوح نشاسته پیشژلاتینه شده و اینولین باعث کاهش سختی (از 04/5 به 55/3) و چسبندگی (از 89/4368 به 54/1640 درصد) شد، اما چسبندگی (از 365/0 به 43/0) و فنریت (از 5/0 به 4/0) را افزایش داد. افزودن NaCl و KCl، سختی محصول را افزایش داد. افزودن اینولین و نشاسته، *a را کاهش دادهاند. *b با افزایش اینولین کاهش مییابد و با افزایش نشاسته اصلاح شده افزایش مییابد. فرمول حاوی 19/0 درصد اینولین، 4/0 درصد نشاسته پیشژلاتینه، 35/0 درصد NaCl و 5/0 درصد KCl بهعنوان فرمولاسیون بهینه برای پنیر تقلیدی کمچرب یافت شد. نتایج تصاویر میکروسکوپ الکترونی روبشی (SEM) نشان داد که کریستالهای اینولین در فاز پیوسته انباشته شدهاند که میتواند منجر به تغییرات مهمی در ویژگیهای حسی و بافتی شود. این مطالعه به این نتیجه رسید که اینولین یا نشاسته را میتوان برای جایگزینی تا 6/3 درصد از چربی موجود در پنیر پیتزا تقلیدی و 35/0 درصد NaCl و 5/0 درصد KCl برای کاهش محتوای سدیم محصول استفاده کرد.
کلیدواژهها
موضوعات
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source. |
- Abbasi, S., & Nateghi, L. (2022). The feasibility of manufacturing low fat pizza cheese by use of pre-gelatinized corn starch. Journal of Food Biosciences and Technology, 12(3), 51-66. https://doi.org/10.30495/JFBT.2022.19731
- Amorim, C., Cardoso, B.B., Silvério, S.C., Silva, J.C., Alves, J.I., Pereira, M.A., & Rodrigues, L.R. (2021). Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. Food Bioscience, 40, 100858. https://doi.org/10.1016/j.fbio.2020.100858
- (1990). Official method of analysis (15th edn). Association of official analytical chemists.washington.DE, USA.
- (2000). Official methods of analysis (17th ed.). AOAC International.
- Ayyash, M.M., & Shah, N.P. (2011). Proteolysis of low-moisture Mozzarella cheese as affected by substitution of NaCl with KCl. Journal of Dairy Science, 94(8), 3769-3777. https://doi.org/10.3168/jds.2010-4104
- Bermúdez-Aguirre, D., & Barbosa-Cánovas, G.V. (2012). Fortification of queso fresco, cheddar and mozzarella cheese using selected sources of omega-3 and some nonthermal approaches. Food Chemistry, 133(3), 787-797. https://doi.org/10.1016/j.foodchem.2012.01.093
- Bi, W., Zhao, W., Li, D., Li, X., Yao, C., Zhu, Y., & Zhang, Y. (2016). Effect of resistant starch and inulin on the properties of imitation mozzarella cheese. International Journal of Food Properties, 19(1), 159-171. https://doi.org/10.1080/10942912.2015.1013634
- Borges, J.V., de Souza, J.A., Fagnani, R., Costa, G.N., & Dos Santos, J.S. (2019). Reduced-fat Frescal sheep milk cheese with inulin: a first report about technological aspects and sensory evaluation. Journal of Dairy Research, 86(3), 368-373. https://doi.org/10.1017/S0022029919000487
- Butt, N.A., Ali, T.M., & Hasnain, A. (2020). Development of rice starch‐based casein and fat mimetics and its application in imitation mozzarella cheese. Journal of Food Processing and Preservation, 44(12), e14928. https://doi.org/10.1111/jfpp.14928
- Chatli, M.K., Gandhi, N., & Singh, P. (2019). Quality of low-fat mozzarella cheese with different fat replacers. Acta Alimentaria, 48(4), 441-448. https://doi.org/10.1556/066.2019.48.4.5
- Cunha, C.R., Dias, A.I., and Viotto, W.H. (2010). Microstructure, texture, color and sensory evaluation of a spreadable processed cheese analogue made with vegetable fat.Food Research International, 43(3), 723-729. https://doi.org/10.1016/j.foodres.2009.11.009
- Da Silva, T.F., & Conti-Silva, A.C. (2018). Potentiality of gluten-free chocolate cookies with added inulin/oligofructose: Chemical, physical and sensory characterization. LWT- Food Science and Technology, 90, 172-179. https://doi.org/10.1016/j.lwt.2017.12.031
- De Souza Paglarini, C., Vidal, V.A., Ribeiro, W., Badan Ribeiro, A.P., Bernardinelli, O.D., Herrero, A.M., & Rodrigues Pollonio, M.A. (2021). Using inulin‐based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. https://doi.org/10.1002/jsfa.10659
- Diamantino, V.R., Costa, M.S., Taboga, S.R., Vilamaior, P.S., Franco, C.M., & Penna, A.L.B. (2019). Starch as a potential fat replacer for application in cheese: Behavior of different starches in casein/starch mixtures and in the casein matrix. International Dairy Journal, 89, 129-138. https://doi.org/10.1016/j.idairyj.2018.08.015
- Dorosti, S., Bazmi, A., Ghanbarzadeh, B.A.B.A.K., & Ayaseh, A. (2010). Effect of partial replacement of NaCl with KCl in cheese-making brine on characteristics of Iranian white cheese. Iranian Journal of Nutrition Sciences & Food Technology, 5(3), 67-74.
- Esmaeili, B., Hallowell, M.R., & Rajagopalan, B. (2015). Attribute-based safety risk assessment. II: Predicting safety outcomes using generalized linear models. Journal of Construction Engineering and Management, 141(8), 04015022. https://doi.org/10.1061/(ASCE)CO.1943-7862.000098
- Fadaei, V., Poursharif, K., Daneshi, M., & Honarvar, M. (2012). Chemical characteristics of low-fat wheyless cream cheese containing inulin as fat replacer. European Journal of Experimental Biology, 2(3), 690-694.
- Ghorbannezhad, P., Bay, A., Yolmeh, M., Yadollahi, R., & Moghadam, J.Y. (2016). Optimization of coagulation–flocculation process for medium density fiberboard (MDF) wastewater through response surface methodology. Desalination and Water Treatment, 57(56), 26916-26931. https://doi.org/10.1080/19443994.2016.1170636
- Glisic, M., Baltic, M., Glisic, M., Trbovic, D., Jokanovic, M., Parunovic, N., & Vasilev, D. (2019). Inulin‐based emulsion‐filled gel as a fat replacer in prebiotic‐and PUFA‐enriched dry fermented sausages. International Journal of Food Science & Technology, 54(3), 787-797. https://doi.org/10.1111/ijfs.13996
- Hennelly, P.J., Dunne, P.G., O'Sullivan, M., & O'Riordan, E.D. (2006). Textural, rheological and microstructural properties of imitation cheese containing inulin. Journal of Food Engineering, 75, 388-395. https://doi.org/10.1016/j.jfoodeng.2005.04.023
- Heydari, A., & Razavi, S.M.A. (2021). Evaluating high pressure-treated corn and waxy corn starches as novel fat replacers in model low-fat O/W emulsions: A physical and rheological study. International Journal of Biological Macromolecules, 184, 393-404. https://doi.org/10.1016/j.ijbiomac.2021.06.052
- Hogan, S.A., McNamee, B.F., O'Riordan, E.D., & O'Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49(4), 1934-1938. https://doi.org/10.1021/jf000276q
- Jayarathna, G.N., Jayasena, D.D., & Mudannayake, D.C. (2022). Garlic inulin as a fat replacer in vegetable fat incorporated low-fat chicken sausages. Food Science of Animal Resources, 42(2), 295-310. https://doi.org/10.5851/kosfa.2022.e5
- Juan, B., Zamora, A., Quintana, F., Guamis, B., & Trujillo, A.J. (2013). Effect of inulin addition on the sensorial properties of reduced‐fat fresh cheese. International Journal of Dairy Technology, 66(4), 478-483. https://doi.org/10.1111/1471-0307.12057
- Karahan, A.G., Kart, A., Akoglu, A., & Çakmakc, M.L. (2011). Physicochemical properties of low‐fat soft cheese Turkish Beyaz made with bacterial cellulose as fat mimetic. International Journal of Dairy Technology, 64(4), 502-508. https://doi.org/10.1111/j.1471-0307.2011.00718.x
- Karami, M., Ehsani, M.R., Mousavi, S.M., Rezaei, K., & Safari, M. (2009). Microstructural properties of fat during the accelerated ripening of ultrafiltered-Feta cheese.Food Chemistry, 113(2), 424-434. https://doi.org/10.1016/j.foodchem.2008.07.104
- Kiziloz, M.B., Cumhur, O., & Kilic, M. (2009). Development of the structure of an imitation cheese with low protein content. Food Hydrocolloids, 23(6), 1596-1601. https://doi.org/10.1016/j.foodhyd.2008.11.006
- Kleyn, D.H., Lynch, J.M., Barbano, D.M., Bloom, M.J., & Mitchell, M.W. (2001). Determination of fat in raw and processed milks by the Gerber method: collaborative study.Journal of AOAC International, 84(5), 1499-1508. https://doi.org/10.1093/jaoac/84.5.1499
- Koca, N., & Metin, M. (2004). Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers.International Dairy Journal, 14(4), 365-373. https://doi.org/10.1016/j.idairyj.2003.08.006
- Krupa-Kozak, U., Drabińska, N., Rosell, C.M., Piłat, B., Starowicz, M., Jeliński, T., & Szmatowicz, B. (2020). High-quality gluten-free sponge cakes without sucrose: Inulin-type fructans as sugar alternatives. Foods, 9(12), 1735. https://doi.org/10.3390/foods9121735
- Lashkari, H., Khosrowshahi asl, A., Madadlou, A., & Alizadeh, M. (2014). Chemical composition and rheology of low-fat Iranian white cheese incorporated with guar gum and gum arabic as fat replacers. Journal of Food Science and Technology, 51, 2584-2591. https://doi.org/10.1007/s13197-012-0768-y
- Lavasani, A.S. (2022). The quality and composition of Iranian low-salt UF-white cheese. Journal of Food Quality, 12, 1-13. https://doi.org/10.1155/2022/3428838
- Marcellino, N., & Benson, D. R. (1992). Scanning electron and light microscopic study of microbial succession on Bethlehem St. Nectaire cheese.Applied and Environmental Microbiology, 58(11), 3448-3454. https://doi.org/10.1128/aem.58.11.3448-3454.1992
- Mazaherinasab, M., Najafi, M.B.H., & Razavi, S.M.A. (2012). Physical, chemical and sensory properties of low-fat mozzarella cheese made from blend of two fat replacers. Iranian Food Science & Technology Research Journal, 8(2), 103-114.
- Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., & Hinrichs, W.L. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate polymers, 130, 405-419. https://doi.org/10.1016/j.carbpol.2015.05.026
- Moghiseh, N., Arianfar, A., Salehi, E.A., & Rafe, A. (2021). Effect of inulin/kefiran mixture on the rheological and structural properties of mozzarella cheese. International Journal of Biological Macromolecules, 191, 1079-1086. https://doi.org/10.1016/j.ijbiomac.2021.09.154
- Mohammadzadeh, B. (2020). Effect of sodium chloride replacement with potassium chloride on some quality indices of fish sauce from Caspian Sea sprat (Clupeonella Utilization and Cultivation of Aquatics, 9(2), 81-93. https://doi.org/10.22069/JAPU.2020.17823.1536
- Mounsey, J.S., & O’Riordan, E.D. (2008). Influence of pre-gelatinised maize starch on the rheology, microstructure and processing of imitation cheese. Journal of Food Engineering, 84(1), 57-64. https://doi.org/10.1016/j.jfoodeng.2007.04.017
- Oliveira, N.M., Dourado, F.Q., Peres, A.M., Silva, M.V., Maia, J.M., & Teixeira, J.A. (2011). Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green Edam cheese. Food and Bioprocess Technology, 4, 1414-1421. https://doi.org/10.1007/s11947-010-0324-6
- Pishelmi, P., Nateghi, L., & Khorshidpour, B. (2017). Investigation of possibility of low-fat yogurt stirred production with pre-gelatinized starch. Food Science Nutrition, 7(1), 87-99.
- Rafiei, R., Roozbeh Nasiraie, L., Emam-Djomeh, Z., & Jafarian, S. (2022). Effect of rice starch hydrocolloid on fat content and rheological properties of low-fat mozzarella cheese. Journal of Food Science and Technology (Iran), 19(122), 365-375.
- Rosa, M.C., Carmo, M.R., Balthazar, C.F., Guimarães, J.T., Esmerino, E.A., Freitas, M.Q., & Cruz, A.G. (2021). Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. International Dairy Journal, 117, 105009. https://doi.org/10.1016/j.idairyj.2021.105009
- Ruiz-Moyano, S., dos Santos, M.T.P.G., Galván, A.I., Merchán, A.V., González, E., de Guía Córdoba, M., & Benito, M.J. (2019). Screening of autochthonous lactic acid bacteria strains from artisanal soft cheese: Probiotic characteristics and prebiotic metabolism. LWT- Food Science and Technology, 114, 108388. https://doi.org/10.1016/j.lwt.2019.108388
- Rulikowska, A., Kilcawley, K.N., Doolan, I.A., Alonso-Gomez, M., Nongonierma, A. B., Hannon, J.A., & Wilkinson, M.G. (2013). The impact of reduced sodium chloride content on Cheddar cheese quality. International Dairy Journal, 28(2), 45-55. https://doi.org/10.1016/j.idairyj.2012.08.007
- Sadrolodabaee, B., & Shahabad, S.I. (2014). Influence of Mono-Diglyceride on protein, fat and elasticity of Mozzarella cheese. Bulletin of Environment, Pharmacology and Life Sciences, 3, 5-8.
- Shabani, J., Mirzaei, H., Najafi, H., Jafari, M., & Najafzadeh, M. (2013). Modeling of processed analogue cheese physicochemical properties on the base of UF-feta Iranian cheese. Iranian Journal of Nutrition Sciences & Food Technology, 7(5), 355-362.
- Shehata, M.G., Abd El-Aziz, N.M., Darwish, A.G., & El-Sohaimy, S.A. (2022). Lacticaseibacillus paracasei KC39 immobilized on prebiotic wheat bran to manufacture functional soft white cheese. Fermentation, 8(10), 496. https://doi.org/10.3390/fermentation8100496
- Sołowiej, B., Glibowski, P., Muszyński, S., Wydrych, J., Gawron, A., & Jeliński, T. (2015). The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocolloids, 44, 1-11. https://doi.org/10.1016/j.foodhyd.2014.08.022
- Świąder, K., Florowska, A., & Konisiewicz, Z. (2021). The sensory quality and the textural properties of functional oolong tea-infused set type yoghurt with inulin. Foods, 10(6), 1242-1256. https://doi.org/10.3390/foods10061242
- Tsatsaragkou, K., Methven, L., Chatzifragkou, A., & Rodriguez-Garcia, J. (2021). The functionality of inulin as a sugar replacer in cakes and biscuits; highlighting the influence of differences in degree of polymerisation on the properties of cake batter and product. Foods, 10(5), 951-963. https://doi.org/10.3390/foods10050951
- Yolmeh, M., & Jafari, S.M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10, 413-433. https://doi.org/10.1007/s11947-016-1855-2
- Yolmeh, M., & Najafzadeh, M. (2014). Optimisation and modelling green bean's ultrasound blanching. International Journal of Food Science & Technology, 49(12), 2678-2684. https://doi.org/10.1111/ijfs.12605
- Żbikowska, A., Szymańska, I., & Kowalska, M. (2020). Impact of inulin addition on properties of natural yogurt. Applied Sciences, 10(12), 4317. https://doi.org/10.3390/app10124317
ارسال نظر در مورد این مقاله