با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

3 گروه مهندسی علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران

چکیده

فلافل یک محصول ارزان قیمت و مغذی است که حاوی مواد گیاهی مختلف، ویتامین، فیبرهای غذایی و ترکیبات فنلی است. هدف از این مطالعه بررسی تأثیر زمان جوانه زدن بر ویژگی‌های فیزیکوشیمیایی آرد نخود جوانه‌زده بود. همچنین اثرات زمان جوانه زدن بر ویژگی‌های فیزیکوشیمیایی و خصوصیات حسی فلافل تهیه شده از آرد نخود جوانه‌زده مورد بررسی قرار گرفت. یافته‌های این تحقیق نشان داد که فرآیند جوانه زدن به‌طور معنی‌داری مقدار فنل کل (از 284.17 به 720.98 میکروگرم اسید گالیک در گرم خشک)، ظرفیت آنتی‌اکسیدانی (از 77.55 درصد به 93.35 درصد) و قرمزی (از 7.65 به 11.39) آرد نخود را افزایش می‌دهد (0.05>p). در حالی‌که روشنایی (از 70.81 به 57.07) و زردی (از 43.71 به 25.62) آرد نخود به‌طور معنی‌داری کاهش یافت (0.05>p). محتوای فنل کل و ظرفیت آنتی‌اکسیدانی فلافل‌های تهیه شده از آرد نخود جوانه‌زده به مدت دو روز (48 ساعت) به‌طور معنی‌داری بیشتر از فلافل تهیه شده از آرد نخود جوانه نزده بود (0.05>p). حجم نمونه‌های فلافل تهیه شده از آرد نخود جوانه نزده، جوانه‌زده به‌مدت یک روز و جوانه‌زده به‌مدت دو روز به‌ترتیب برابر 18.75، 16.60 و 15.40 سانتی‌متر مکعب بود. کمترین مقدار جذب روغن مربوط به نمونه تهیه شده از نخود جوانه‌زده به‌مدت دو روز بود (0.05>p). فرآیند جوانه زدن تأثیر معنی‌داری بر سفتی، انسجام و قابلیت جویدن فلافل‌ها نداشت (0.05<p). در مجموع، استفاده از آرد نخود جوانه‌زده به‌مدت یک روز (24 ساعت) برای تولید فلافل به‌دلیل بهترین طعم، بیشترین امتیاز پذیرش کلی، محتوای بالای ترکیبات فنلی، ظرفیت آنتی‌اکسیدانی بالا و جذب کمتر روغن، توصیه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Impact of Sprouting Time of Chickpea on the Physicochemical, Textural, Sensory, and Total Phenolic Characteristics of Falafel Prepared from Sprouted Chickpea Flour

نویسندگان [English]

  • Kimia Goharpour 1
  • Fakhreddin Salehi 2
  • Amir Daraei Garmakhany 3

1 M.Sc Student, Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran

2 Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran

3 Department of Food Science and Technology, Faculty of Engineering and Natural Resources, Bu-Ali Sina University, Hamedan, Iran

چکیده [English]

Falafel is considered as an inexpensive and nutritious product that contains various plant substances, vitamins, dietary fibers, and phenolic compounds. The aim of this research was to investigate the impact of sprouting time on the physicochemical characteristics of sprouted chickpea flour. Also, the effects of sprouting time on the physicochemical characteristics and sensory properties of falafel prepared from sprouted chickpea flour were examined. The finding of this research indicated that the sprouting process significantly increased the total phenolic content (from 284.17 to 720.98 μg gallic acid/g dry), antioxidant capacity (from 77.55% to 93.35%), and redness (from 7.65 to 11.39) of chickpea flour (p<0.05). While, it significantly decreased the lightness (from 70.81 to 57.07) and yellowness (from 43.71 to 25.62) of chickpea flour (p<0.05). The total phenolic content and antioxidant capacity of falafel prepared from flour of sprouted chickpea for two-days (48 hours) were significantly higher than those prepared from unsprouted chickpeas flour (p<0.05). The volume of falafel samples produced from unsprouted, one-day sprouted, and two-day sprouted chickpea flours was 18.75, 16.60, and 15.40 cm3, respectively. The minimum oil uptake was observed in the sample prepared from chickpeas sprouted for two-days (p<0.05). The sprouting process did not have a significant impact on the firmness, cohesiveness, and chewiness of the falafel (p>0.05). In general, utilizing of one-day (24 hours) sprouted chickpea flour for the production of falafel is recommended due to the best flavor, the highest overall acceptance score, high content of phenolic compounds, high antioxidant capacity, and low oil absorption.

کلیدواژه‌ها [English]

  • Antioxidant capacity
  • Cohesiveness
  • Firmness
  • Oil absorption
  • Total phenolic

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Amin-Ekhlas, S., Pajohi-Alamoti, M., & Salehi, F. (2024). Effect of ultrasonic and infrared treatments on microbial population, physicochemical properties, and total phenols of sprouted wheat powder. Innovative Food Technologies, 11(3), 197-210. https://doi.org/10.22104/ift.2024.6712.2166
  2. Bidkhori, P., & Mohammadpour Karizaki, V. (2022). Diffusion and kinetic modeling of water absorption process during soaking and cooking of chickpea. Legume Science, 4(1), e116. https://doi.org/10.1002/leg3.116
  3. Caine, W.R., Aalhus, J.L., Best, D.R., Dugan, M.E.R., & Jeremiah, L.E. (2003). Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science, 64(4), 333-339. https://doi.org/10.1016/S0309-1740(02)00110-9
  4. Daraei Garmakhany, A., Aghajani, N., & Kashiri, M. (2011). Use of hydrocolloids as edible covers to produce low fat French fries. Latin American Applied Research, 41(3), 211-216.
  5. Doddamani, D., Katta, M.A., Khan, A.W., Agarwal, G., Shah, T.M., & Varshney, R.K. (2014). CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics, 15(1), 212. https://doi.org/10.1186/1471-2105-15-212
  6. Eftekhari, A., Salehi, F., Gohari Ardabili, A., & Aghajani, N. (2023). Effects of basil seed and guar gums coatings on sensory attributes and quality of dehydrated orange slices using osmotic-ultrasound method. International Journal of Biological Macromolecules, 253, 127056. https://doi.org/10.1016/j.ijbiomac.2023.127056
  7. El-Adawy, T.A., Rahma, E.H., El-Bedawey, A.A., & El-Beltagy, A.E. (2003). Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition, 58(3), 1-13. https://doi.org/10.1023/B:QUAL.0000040339.48521.75
  8. Elobuike, C.S., Idowu, M.A., Adeola, A.A., & Bakare, H.A. (2021). Nutritional and functional attributes of mungbean (Vigna radiata [L] Wilczek) flour as affected by sprouting time. Legume Science, 3(4), e100. https://doi.org/10.1002/leg3.100
  9. Fikry, M., Khalifa, I., Sami, R., Khojah, E., Ismail, K.A., & Dabbour, M. (2021). Optimization of the frying temperature and time for preparation of healthy falafel using air frying technology. Foods, 10(11), 2567. https://doi.org/10.3390/foods10112567
  10. Gan, R.-Y., Lui, W.-Y., Chan, C.-L., & Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata) sprouts. Journal of Food Processing and Preservation, 41(1), e12846. https://doi.org/10.1111/jfpp.12846
  11. Ghoshal, G., & Kaushal, K. (2020). Extraction, characterization, physicochemical and rheological properties of two different varieties of chickpea starch. Legume Science, 2(1), e17. https://doi.org/10.1002/leg3.17
  12. Goharpour, K., Salehi, F., & Daraei Garmakhany, A. (2024). Effects of different drying techniques of ground sprouted chickpeas on quality, textural properties, and sensory attributes of fried falafel. Food Science & Nutrition, 12(9), 6328-6337. https://doi.org/10.1002/fsn3.4240
  13. Hojjati, M., Mehrnia, M.A., Kakaaghazadeh, A., & Feghhi, S. (2020). Effects of edible hydrocolloids on quality characteristics of the fried falafels emphasize on decreases in oil uptakes. Iranian Journal of Nutrition Sciences and Food Technology, 14(4), 77-88.
  14. Javaheripour, N., Shahsoni Mojarad, L., Mahdikhani, S., & Inanloo, Y. (2022). The effect of adding quinoa flour and germinated wheat flour on the physicochemical، microbial and sensory properties of sponge cake. Journal of Food Science and Technology (Iran), 18(119), 375-392. https://doi.org/10.52547/fsct.18.119.375
  15. Karimi, A.S., & Saremnezhad, S. (2020). The effect of germination process on some functional properties of Iranian lentil cultivars. Journal of Food Science and Technology (Iran), 17(101), 167-176. https://doi.org/10.52547/fsct.17.101.167
  16. Khodadadi, M., Masoumi, A., & Sadeghi, M. (2024). Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters. Poultry Science, 103(12), 104277. https://doi.org/10.1016/j.psj.2024.104277
  17. Khodadadi, M., Masoumi, A., Sadeghi, M., & Moheb, A. (2023). Optimization of drying specification and protein losses of poultry litter during drying process using response surface methodology. Thermal Science and Engineering Progress, 43, 101958. https://doi.org/10.1016/j.tsep.2023.101958
  18. Kim, S.M., Aung, T., & Kim, M.J. (2022). Optimization of germination conditions to enhance the antioxidant activity in chickpea (Cicer arietimum) using response surface methodology. Korean Journal of Food Preservation, 29(4), 632-644.
  19. Kumar, Y., Sharanagat, V.S., Singh, L., & Mani, S. (2020). Effect of germination and roasting on the proximate composition, total phenolics, and functional properties of black chickpea (Cicer arietinum). Legume Science, 2(1), e20. https://doi.org/10.1002/leg3.20
  20. Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., Zhao, K., & Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science and Technology, 55(12), 5142-5152. https://doi.org/10.1007/s13197-018-3460-z
  21. Meullenet, J.-F., Lyon, B.G., Carpenter, J.A., & Lyon, C.E. (1998). Relationship between sensory and instrumental texture profile attributes. Journal of Sensory Studies, 13(1), 77-93. https://doi.org/10.1111/j.1745-459X.1998.tb00076.x
  22. Nishinari, K., Fang, Y., & Rosenthal, A. (2019). Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. Journal of Texture Studies, 50(5), 369-380. https://doi.org/10.1111/jtxs.12404
  23. Oghbaei, M., & Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015. https://doi.org/10.1080/23311932.2015.1136015
  24. Ozturk, I., Sagdic, O., Tornuk, F., & Yetim, H. (2014). Effect of wheat sprout powder incorporation on lipid oxidation and physicochemical properties of beef patties. International Journal of Food Science & Technology, 49(4), 1112-1121. https://doi.org/10.1111/ijfs.12407
  25. Salehi, F. (2023). Effects of ultrasonic pretreatment and drying approaches on the drying kinetics and rehydration of sprouted mung beans. Legume Science, 5(4), e211. https://doi.org/10.1002/leg3.211
  26. Salehi, F., Amiri, M., & Ghazvineh, S. (2024). Effect of ultrasonic pretreatment on textural properties and sensory attributes of cooked faba beans. Ultrasonics Sonochemistry, 110, 107040. https://doi.org/10.1016/j.ultsonch.2024.107040
  27. Salehi, F., Ghazvineh, S., & Inanloodoghouz, M. (2023a). Effects of edible coatings and ultrasonic pretreatment on the phenolic content, antioxidant potential, drying rate, and rehydration ratio of sweet cherry. Ultrasonics Sonochemistry, 99, 106565. https://doi.org/10.1016/j.ultsonch.2023.106565
  28. Salehi, F., Razavi Kamran, H., & Goharpour, K. (2023b). Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: process optimization using response surface methodology. Ultrasonics Sonochemistry, 98, 106505. https://doi.org/10.1016/j.ultsonch.2023.106505
  29. Serdaroglu, M. (2006). The characteristics of beef patties containing different levels of fat and oat flour. International Journal of Food Science & Technology, 41(2), 147-153. https://doi.org/10.1111/j.1365-2621.2005.01041.x
  30. Sofi, S.A., Rafiq, S., Singh, J., Mir, S.A., Sharma, S., Bakshi, P., McClements, D.J., Mousavi Khaneghah, A., & Dar, B.N. (2023). Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum) flour. Food Chemistry, 405, 135011. https://doi.org/10.1016/j.foodchem.2022.135011
  31. Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., Xue, S., & Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chemistry, 119(3), 1195-1200. https://doi.org/10.1016/j.foodchem.2009.08.035


 

CAPTCHA Image