با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

چکیده

نگهدارنده‌ها موادی هستند که می‌توانند از تخمیر، اسیدی شدن و سایر فرآیندهایی که موجب فساد غذا می‌شوند، جلوگیری یا آن‌ها را متوقف کنند. این پژوهش با هدف استخراج عصاره ریشه گیاهPaeonia officinalis  با کمک اعمال روش امواج فراصوت (40 کیلوهرتز، 40 درجه سانتی‌گراد به‌مدت 45 دقیقه) و مایکروویو (400 وات، 40 درجه سانتی‌گراد، 5 دقیقه) در روش غوطه‌وریی و ارزیابی بازده استخراج، ترکیبات شیمیایی، خواص آنتی‌اکسیدانی و ضدمیکروبی عصاره‌ها انجام گرفت. در مرحله بعد، بهترین عصاره به میزان 2، 4 و 6 درصد به فرمولاسیون دسر پاناکوتا اضافه شد تا اثرات آن بر ویژگی‌های فیزیکی، شیمیایی، حسی و میکروبی محصول در طول مدت نگهداری بررسی شود. یافته‌ها نشان می‌دهند که اعمال روش امواج فراصوت راندمان استخراج عصاره را بهبود می‌بخشد. این عصاره دارای بالاترین سطوح ترکیبات فنلی (1.18±52.64 میلی‌گرم اسید گالیک در هر گرم)، خواص آنتی‌اکسیدانی (0.47±76.33 درصد) و فعالیت ضد میکروبی در برابر Escherichia coli،Staphylococcus aureus  وCandida albicans  بوده است. افزودن عصاره به پاناکوتا نرخ تولید اسید را در محصول کاهش می‌دهد و منجر به کاهش جمعیت کل باکتری‌ در مقایسه با نمونه شاهد در پایان دوره نگهداری می‌شود. دسر حاوی 2 درصد عصاره ویژگی‌های حسی (طعم، رنگ، بو، بافت و پذیرش کلی) مشابه نمونه شاهد داشته در حالی‌که کیفیت میکروبیولوژیکی آن برای مدت طولانی‌تری حفظ گردید. عصاره اتانولی ریشه Paeonia officinalis که با اعمال روش امواج فراصوت در روش غوطه‌وری استخراج شده است، می‌تواند به‌عنوان یک نگهدارنده مؤثر برای دسرهای لبنی معرفی شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Bioactive Components and Characterization of Extracted Paeonia officinalis using Ultrasonic and Microwave Assisted Maceration: Potential Evaluation as a Preservative in Panna Cotta

نویسندگان [English]

  • Farnaz Fallahpour Sichani
  • Hajar Abbasi

Department of Food Science and Technology, College Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

چکیده [English]

Preservatives are substances that can prevent or halt fermentation, acidification, and other processes that cause food to decompose. This study aims to extract the root of Paeonia officinalis with assistance of ultrasonic (40 kHz, 40 °C for 45 min) and microwave (400 watts, 40 °C, 5 min) maceration techniques, and evaluate the extraction yield, chemical compounds, antioxidant, and antimicrobial properties of the extracts. In the next phase, the best extract is incorporated at 2%, 4%, and 6% into the formulation of Panna cotta dessert to assess its effects on the  physical, chemical, sensory, and microbial aspects of the product during storage. The findings reveal that the ultrasonic-assisted method improved the extraction efficiency of the extract. The extract had the highest levels of phenolic compounds (52.64±1.18 mg of gallic acid/g), antioxidant properties (76.33±0.47%), and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of the extract to Panna cotta reduces the rate of acid production and results in lower total populations of bacteria compared to the control sample at the end of storage period. The dessert containing 2% extract exhibited sensory characteristics (taste, color, odor, texture, and overall acceptance) similar to the control, while maintaining microbiological quality for a longer period. The ethanolic extract of Paeonia officinalis root obtained through the ultrasonic-assisted method can be introduced as an effective preservative for dairy desserts.

کلیدواژه‌ها [English]

  • Microwave
  • Paeonia officinalis
  • Preservatives
  • Rheological behavior
  • Ultrasonication

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Adeli, M., & Samavati, V. (2015). Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus International Journal of Biological Macromolecules, 72, 580-587. https://doi.org/10.1016/j.ijbiomac.2014.08.047
  2. Adhami, H.R., Farsam, H., & Krenn, L. (2011). Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytotherapy Research, 25(8), 1148-1152. https://doi.org/10.1002/ptr.3409
  3. Ahmad, I., Hao, M., Li, Y., Zhang, J., Ding, Y., & Lyu, F. (2022). Fortification of yogurt with bioactive functional foods and ingredients and associated challenges-A review. Trends in food Science & Technology, 129, 558-580. https://doi.org/10.1016/j.tifs.2022.11.003
  4. Ahmadi, S., Soleimanian-Zad, S., & Zaeim, D. (2020). Antibacterial and antifungal activity of the aqueous and methanolic extracts and essential oils of red beets Beta vulgaris Zahedan Journal of Research in Medical Sciences, 22(3). https://doi.org/10.5812/zjrms.83725
  5. Alupului, A., Calinescu, I., & Lavric, V. (2009, May). Ultrasonic vs. microwave extraction intensification of active principles from medicinal plants. In AIDIC conference series (Vol. 9, No. 2006, pp. 1-8). Milano, Italy: ERIS CTSrl. https://doi.org/10.3303/CET0917171
  6. Bagade, S.B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry, 51(2), 138-149. https://doi.org/10.1080/10408347.2019.1686966
  7. Batinić, P., Milošević, M., Lukić, M., Prijić, Ž., Gordanić, S., Filipović, V., & Marković, T. (2022). In vitro evaluation of antioxidative activities of the extracts of petals of Paeonia lactiflora and Calendula officinalis incorporated in the new forms of biobased carriers. Food and Feed Research, 49(1), 23-35. https://doi.org/10.5937/ffr0-36381
  8. Blanco-Llamero, C., Fonseca, J., Durazzo, A., Lucarini, M., Santini, A., Señoráns, F.J., & Souto, E.B. (2022). Nutraceuticals and food-grade lipid nanoparticles: from natural sources to a circular bioeconomy approach. Foods, 11(15), 2318. https://doi.org/10.3390/foods11152318
  9. Chauhan, A., Jindal, T., Chauhan, A., & Jindal, T. (2020). Microbiological methods for food analysis. Microbiological Methods for Environment, Food and Pharmaceutical Analysis, 197-302. https://doi.org/10.1007/978-3-030-52024-3_8
  10. Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  11. Yin, C., Zhang, X., Li, K., Bai, Y., Yang, P., Li, C., & Song, X. (2022). Evaluation on the fresh eating quality of tree peony flowers. Food Bioscience, 47, 101611. https://doi.org/10.1016/j.fbio.2022.101611
  12. Clark, S., Costello, M., Drake, M., & Bodyfelt, F. (Eds.). (2009). The sensory evaluation of dairy products(Vol. 571). New York: Springer. https://doi.org/10.1007/978-3-031-30019-6
  13. Dienaitė, L., Pukalskienė, M., Pukalskas, A., Pereira, C.V., Matias, A.A., & Venskutonis, P.R. (2019). Isolation of strong antioxidants from Paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants, 8(8), 249. https://doi.org/10.3390/antiox8080249
  14. Djaoud, K., Boulekbache‐Makhlouf, L., Yahia, M., Mansouri, H., Mansouri, N., Madani, K., & Romero, A. (2020). Dairy dessert processing: Effect of sugar substitution by date syrup and powder on its quality characteristics. Journal of Food Processing and Preservation, 44(5), e14414. https://doi.org/10.1111/jfpp.14414
  15. Dulgheru, C., & Burzo, I. (2010). Contribution to knowledge the volatile oil from Paeonia officinalis Flowers, 639-641.
  16. Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Central European Journal of Chemistry, 8, 243-257. https://doi.org/10.2478/s11532-010-0006-2
  17. Ferioli, F., Giambanelli, E., D'Alessandro, V., & D'Antuono, L.F. (2020). Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype “Aglio Rosso di Sulmona”(Sulmona Red Garlic). Food Chemistry, 312, 126086. https://doi.org/10.1016/j.foodchem.2019.126086
  18. Ghafoor, K., Choi, Y.H., Jeon, J.Y., & Jo, I.H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988-4994. https://doi.org/10.1021/jf9001439
  19. Gupta, R., & Yadav, R.K. (2021). Impact of chemical food preservatives on human health. Palarch's Journal Of Archaeology Of Egypt/Egyptology, 18(15), 811-818.
  20. Hoehn, E., Gasser, F., Guggenbühl, B., & Künsch, U. (2003). Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biology and Technology, 27(1), 27-37. https://doi.org/10.1016/S0925-5214(02)00190-4
  21. Jridi, M., Souissi, N., Salem, M.B., Ayadi, M.A., Nasri, M., & Azabou, S. (2015). Tunisian date (Phoenix dactylifera) by-products: Characterization and potential effects on sensory, textural and antioxidant properties of dairy desserts. Food Chemistry, 188, 8-15. https://doi.org/10.1016/j.foodchem.2015.04.107
  22. Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11. https://doi.org/10.1016/j.cep.2019.01.006
  23. Karo, F.Y.E.B., Sinaga, H., & Karo, T. (2021). The use of konjac flour as gelatine substitution in making panna cotta. In IOP Conference Series: Earth and Environmental Science (Vol. 782, No. 3, p. 032106). IOP Publishing. https://doi.org/10.1088/1755-1315/782/3/032106
  24. Kumar, K., Srivastav, S., & Sharanagat, V.S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
  25. Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., & Zheng, B. (2017). Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera) seeds. Industrial Crops and Products, 107, 546-557. https://doi.org/10.1016/j.indcrop.2017.05.060
  26. Mahajan, D., Bhat, Z.F., & Kumar, S. (2015). Pomegranate (Punica granatum) rind extract as a novel preservative in cheese. Food Bioscience, 12, 47-53. https://doi.org/10.1016/j.fbio.2015.07.005
  27. Milovanovic, I., Zengin, G., Maksimovic, S., & Tadic, V. (2021). Supercritical and ultrasound‐assisted extracts from Pleurotus pulmonarius mushroom: chemical profiles, antioxidative, and enzyme‐inhibitory properties. Journal of the Science of Food and Agriculture, 101(6), 2284-2293. https://doi.org/10.1002/jsfa.10849
  28. Mason, T., Chemat, F., & Vinatoru, M. (2011). The extraction of natural products using ultrasound or microwaves. Current Organic Chemistry, 15(2), 237-247. https://doi.org/10.2174/138527211793979871
  29. Mirza, S.K., Asema, U.K., & Kasim, S.S. (2017). To study the harmful effects of food preservatives on human health. Journal of Medicinal Chemistry, 2, 610-616.
  30. Mothana, R.A., Al-Said, M.S., Al-Yahya, M.A., Al-Rehaily, A.J., & Khaled, J.M. (2013). GC and GC/MS analysis of essential oil composition of the endemic Soqotraen Leucas virgata f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences, 14(11), 23129-23139. https://doi.org/10.3390/ijms141123129
  31. Niko, Z.N., Ghajarbeygi, P., Mahmoudi, R., Mousavi, S., & Mardani, K. (2016). Inhibitory effects of aloe vera gel aqueous extract and casei against E. coli in yoghurt. Journal of Biology and Today's World, 5(9), 157-162.
  32. Nottagh, S., Hesari, J., Peighambardoust, S.H., Rezaei-Mokarram, R., & Jafarizadeh-Malmiri, H. (2020). Effectiveness of edible coating based on chitosan and Natamycin on biological, physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. Biologia, 75, 605-611. https://doi.org/10.2478/s11756-019-00378-w
  33. Park, K.R., Lee, J.Y., Cho, M., Hong, J.T., & Yun, H.M. (2021). Biological mechanisms of paeonoside in the differentiation of pre-osteoblasts and the formation of mineralized nodules. International Journal of Molecular Sciences, 22(13), 6899. https://doi.org/10.3390/ijms22136899
  34. Peker, H., & Arslan, S. (2017). Effect of olive leaf extract on the quality of low fat apricot yogurt. Journal of Food Processing and Preservation, 41(5), e13107. https://doi.org/10.1111/jfpp.13107
  35. Pinzon, M.I., Sanchez, L.T., Garcia, O.R., Gutierrez, R., Luna, J.C., & Villa, C.C. (2020). Increasing shelf life of strawberries (Fragaria) by using a banana starch‐chitosan‐Aloe vera gel composite edible coating. International Journal of Food Science & Technology, 55(1), 92-98. https://doi.org/10.1111/ijfs.14254
  36. Qamar, S., Torres, Y.J., Parekh, H.S., & Falconer, J.R. (2021). Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. Journal of Chromatography B, 1167, 122581. https://doi.org/10.1016/j.jchromb.2021.122581
  37. Raikos, V., Grant, S.B., Hayes, H., & Ranawana, V. (2018). Use of β-glucan from spent brewer's yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. Journal of Dairy Science, 101(7), 5821-5831. https://doi.org/10.3168/jds.2017-14261
  38. Rezvani, F., Abbasi, H., & Nourani, M. (2020). Effects of protein–polysaccharide interactions on the physical and textural characteristics of low‐fat whipped cream. Journal of Food Processing and Preservation, 44(10), e14743. https://doi.org/10.1111/jfpp.14743
  39. Sato, Y., Unno, Y., Ubagai, T., & Ono, Y. (2018). Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PLoS One, 13(3), e0194556. https://doi.org/10.1371/journal.pone.0194556
  40. Saboora, A., Pourbarat, F., & Fallah, H.H. (2014). Comparison of different extraction methods for optimizing antioxidant compounds in Origanum majorana Journal of Food Quality, 693-704.
  41. Salimi, M., Majd, A., Sepahdar, Z., Azadmanesh, K., Irian, S., Ardestaniyan, M.H., & Rastkari, N. (2012). Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharmaceutical Biology, 50(11), 1416-1422. https://doi.org/10.3109/13880209.2012.682118
  42. Sanjay, S.P., Asgar, S., Mishra, D., Kalyankar, S.D., & Patil, M.R. (2020). Effect of cinnamon powder addition on microbial quality of fresh Buttermilk. International Journal of Current Microbiology and Applied Sciences, 9(10), 2005-2009.
  43. Shirsath, S.R., Sonawane, S.H., & Gogate, P.R. (2012). Intensification of extraction of natural products using ultrasonic irradiations-A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23. https://doi.org/10.1016/j.cep.2012.01.003
  44. Silva, M.M., & Lidon, F.C. (2016). Food preservatives-An overview on applications and side effects. Emirates Journal of Food and Agriculture, 28(6), 366.
  45. Stagos, D. (2019). Antioxidant activity of polyphenolic plant extracts. Antioxidants, 9(1), 19. https://doi.org/10.3390/antiox9010019
  46. Barbieri, F., Montanari, C., Gardini, F., & Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: A review. Foods, 8(1), 17. https://doi.org/10.3390/foods8010017
  47. Sun, X., Guo, X., Ji, M., Wu, J., Zhu, W., Wang, J., & Zhang, Q. (2019). Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 C. Food Chemistry, 272, 643-652. https://doi.org/10.1016/j.foodchem.2018.08.040
  48. Swaathy, S., Kavitha, V., Pravin, A.S., Mandal, A.B., & Gnanamani, A. (2014). Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnology Reports, 4, 161-170. https://doi.org/10.1016/j.btre.2014.10.004
  49. Toma, M., Vinatoru, M., Paniwnyk, L., & Mason, T.J. (2001). Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8(2), 137-142. https://doi.org/10.1016/S1350-4177(00)00033-X
  50. VanWees, S.R., Rankin, S.A., & Hartel, R.W. (2020). The microstructural, melting, rheological, and sensorial properties of high‐overrun frozen desserts. Journal of Texture Studies, 51(1), 92-100. https://doi.org/10.1111/jtxs.12461
  51. Walter, M., Brzozowski, B., & Adamczak, M. (2021). Effect of supercritical extract from black poplar and basket willow on the quality of natural and probiotic drinkable yogurt. Animals, 11(10), 2997. https://doi.org/10.3390/ani11102997
  52. Yeasmin, D., Swarna, R.J., Nasrin, M., Parvez, S., & Alam, M.F. (2016). Phytochemical analysis and antioxidant activity of three flowers colours Chrysanthemum moriflolium International Journal of Biosciences, 9, 69-77.
  53. Yourdkhani, E., & Jafarpour, A. (2021). The effect of aqueous and ethanolic extract of Hollyhock black (Alcea rosea) on physicochemical and antioxidant properties of ketchup sauce. Food & Health, 4(3), 19-23.
  54. Zuo, H.L., Zhang, Q.R., Chen, C., Yang, F.Q., Yu, H., & Hu, Y.J. (2021). Molecular evidence of herbal formula: a network‐based analysis of Si‐Wu decoction. Phytochemical Analysis, 32(2), 198-205. https://doi.org/10.1002/pca.2965
CAPTCHA Image