با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 گروه علوم و صنایع غذایی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 مرکز تحقیقات علوم دارویی دریایی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

3 گروه‌های زراعت و زیست‌شناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

لیپیدها گروه بزرگی از ترکیبات شیمیایی با اسیدهای چرب در ساختار خود هستند که برای عملکرد طبیعی همه موجودات ضروری‌اند. اسیدهای چرب غیراشباع چندگانه با پیوندهای مضاعف متعدد از جمله امگا-3 و امگا-6 به‌عنوان ترکیبات شیمیایی مفید برای سلامت انسان شناخته می‌شوند. اخیرا تلاش زیادی برای یافتن روغن‌هایی با ویژگی‌های سودمند ویژه، به‌دلیل استفاده گسترده از روغن‌های گیاهی در صنایع غذایی و دیگر صنایع انجام شده است. لویی جنوبی گیاهی است که تقریباً تمام قسمت‌های آن خوراکی است بویژه ریزوم‌های نشاسته‌ای آن که دارای ترکیب پروتئینی قابل مقایسه با ذرت یا برنج است. در این تحقیق، نمونه‌های گیاهی از سه نقطه جنوب ایران شامل تالاب شادگان، هویزه (تالاب هورالعظیم) و حمیدآباد (رودخانه دز) جمع آوری و محتوای روغن و نوع اسیدهای چرب و همچنین برخی ترکیبات شیمیایی از جمله خاکستر، رطوبت، فیبر، پروتئین و کربوهیدرات آنها ارزیابی و مقایسه شد. روغن با استفاده از تکنیک سوکسله استخراج شد و ترکیب اسیدهای چرب توسط GC/MS تعیین شد. میانگین میزان روغن در اندام‌های هوایی (ساقه و برگ) و زیرزمینی (ریزوم و ریشه) به‌ترتیب 2.62 و 1.52 درصد بود. نمونه‌ها حاوی 12 اسید چرب بودند که 3 اسید چرب غیراشباع و 9 اسید چرب اشباع بودند. در ریشه و ریزوم بیشترین نسبت اسیدهای چرب غیراشباع شامل اولئیک اسید، اسید لینولئیک، اسید آلفا-لینولنیک 1.51±65.85 درصد و در ساقه و برگ 0.09±41.10 درصد بود. مقادیر فیبر، رطوبت، خاکستر، پروتئین و کربوهیدرات‌ها در نمونه‌ها به‌ترتیب از 43.34 تا 45.93- 12.57 تا 17.84- 3.64 تا 4.25- 6.20 تا 6.40 درصد و 23.19 تا 32.18 درصد متغیر بود. محتوای فیبر بالا و ظرفیت این گیاه برای رشد سریع و گسترده در آب شیرین و شور، آن را به یک کاندید مناسب برای گنجاندن در رژیم غذایی انسان و حیوان از طریق طرح‎های اصلاحی کشاورزی تبدیل می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fatty Acid Profile and Chemical Composition of Three Populations of Southern Cattail (Typha domingensis) from South of Iran

نویسندگان [English]

  • Mona Shojaee Barjouee 1
  • Massoumeh Farasat 2 3
  • Mehrnoosh Tadayoni 1

1 Department of Food Science and Technology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Departments of Agronomy and Biology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

چکیده [English]

Lipids are comprised of heterogenous group of chemical compounds, the majority of which have fatty acids as part of their structure. Fatty acids (FAs) are essential for the normal functioning of all organisms. Polyunsaturated fatty acids with multiple double bonds (PUFAs), including omega-3 (n-3) and omega-6 (n-6) are known as beneficial chemicals for human health. Recent attempts to find and identify oils with special advantageous qualities have been prompted by the widespread use of vegetable oils in the food and other industries. Southern cattail (Typha domingensis) is a plant whose practically all parts are edible, particularly its starchy rhizomes, which have a protein composition comparable to corn or rice. In this study, to investigate the nutritional value of this plant, plant samples were collected from three locations in the south of Iran, including Shadegan Wetland, Hoveyzeh (Hoorolazim Wetland), and Hamidabad (Dez River). The oil content and fatty acid profile as well as some chemical compositions such as ash, moisture, fiber, protein, and carbohydrates were evaluated and compared. The oil was extracted using the Soxhlet technique, and the fatty acid composition was determined by GC/MS. The average oil content in aerial (stems and leaves) and underground (rhizomes and roots) organs was 2.62 and 1.52%, respectively. The samples contained 12 fatty acids, three of which were unsaturated and nine were saturated. In roots and rhizomes, the maximum proportion of unsaturated fatty acids including oleic acid (ω-9), linoleic acid (ω-6), alpha- linolenic acid (ω-3) was 65.85±1.51%, whereas in stems and leaves, it was 41.10±0.09%. The amounts of fiber, moisture, ash, protein, and carbohydrates in the samples ranged from 43.34 to 45.93%, 12.57 to 17.84%, 3.64 to 4.25%, 6.20 to 6.40%, and 23.19 to 32.18%, respectively. This plant's high fiber content with the capacity to grow quickly and widely in fresh and saline water make it a viable candidate for inclusion in human diet and animal feed through agricultural breeding initiatives.

کلیدواژه‌ها [English]

  • Fatty acid
  • Fiber
  • PUFAs
  • Typha domingensis

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Ahmed, S., Shah, P., & Ahmed, O. (2024). Biochemistry, Lipids. In StatPearls [Internet]; StatPearls: Treasure Island, FL, USA.
  2. Ahmad Dar, N., Hamid, A., Pandit, A.K., Ganai, B.A., Ullah Bhat, S., & Hussain, A. (2013). Total lipid content in macrophytes of Wular lake, A Ramsar site in Kashmir Himalaya. International Journal of Plant Physiology and Biochemistry, 5(1), 11-15. https://doi.org/10.5897/IJPPB12.020
  3. Akram, A., & Jabeen, Q. (2022). Pharmacological evaluation of Typha domingensis for its potentials against diet-induced hyperlipidemia and associated complications. Tropical Journal of Pharmaceutical Research, 21(3), 563-569, https://doi.org/4314/tjpr.v21i3.16
  4. (1995). Official methods of analysis 16th Ed. Association of official analytical chemists. Washington DC, USA.
  5. (2000). Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  6. (2005). Association of Official Analytical Chemist, Official Methods of Analysis. 18th Edition, AOAC International, Gaithersburg, MD, USA.
  7. Azish, S., Asareh, A., & Khodadadi Dehkordi, D. (2023). Quality assessment of Dez River water in terms of efficiency in pressurized irrigation systems. Water Resources Engineering Journal, 15(55). https://doi.org/10.30495/wej.2023.17899.2031
  8. Bansal, S., Lishawa, S.C., Newman, S., Tangen, B.A., Wilcox, D., Albert, D., Anteau, M.J., Chimney, M.J., Cressey, R.L., DeKeyser, E., Elgersma, K.J., Finkelstein, S.A., Freeland, J., Grosshans, R., Klug, P.E., Larkin, D.J., Lawrence, B.A., Linz, G., Marburger, J., Noe, G., Otto, C., Reo, N., Richards, J., Richardson, C., Schrank, A.J., Svedarsky, D., Travis, S., Tuchman, N., & Windham-Myers, L. (2019). Typha (cattail) invasion in North American wetlands: biology, regional problems, impacts, ecosystem services, and management. Wetlands, 39(4), 645-684. https://doi.org/1007/s13157-019-01174-7
  9. Bishehkolaei, M., & Pathak, Y. (2024). Influence of omega n-6/n-3 ratio on cardiovascular disease and nutritional interventions, Human Nutrition & Metabolism, 37, 200275. https://doi.org/10.1016/j.hnm.2024.200275
  10. Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284. https://doi.org/10.1016/j.ceja.2022.100284
  11. Bonanno, G., & Cirelli, G.L. (2017). Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensisTypha latifoliaand Typha angustifolia. Ecotoxicology and Environmental Safety, 143, 92-101. https://doi.org/10.1016/j.ecoenv.2017.05.021
  12. Cañavate, J-P., & Fernández-Díaz, C. (2022). Salinity induces unique changes in lipid classes and fatty acids of the estuarine haptophyte Diacronema vlkianum. European Journal of Phycology, 57(3), 297-317. https://doi.org/10.1080/09670262.2021.1970234
  13. Cao, S., Dong, T., Xu, G., & Wang, F. (2016). Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environmental Technology, 37(24), 3193-9. https://doi.org/10.1080/09593330.2016.1181111.
  14. Chakma, K., Cicek, N., & Rahman, M. (2017). Fiber extraction efficiency, quality and characterization of cattail fibres for textile applications.  CSBE/SCGAB 2017 Annual Conference, Canad Inns Polo Park, Winnipeg, Manitoba, 6-10 August 2017.
  15. Coniglio, S., Shumskaya, M., & Vassiliou, E. (2023). Unsaturated fatty acids and their immunomodulatory properties. Biology, 12(2), 279. https://doi.org/10.3390/biology12020279
  16. Czumaj, A., & Śledziński, T. (2020). Biological role of unsaturated fatty acid desaturases in health and disease. Nutrients, 12(2), 356. https://doi.org/10.3390/nu12020356
  17. Daley, C.A., Abbott, A., & Doyle, P.S. (2010). A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. NutritionJournal, 9, 10. https://doi.org/10.1186/1475-2891-9-10
  18. de Carvalho, C.C.C.R., & Caramujo, MJ. (2018). The various roles of fatty acids. Molecules. 9, 23(10), 2583. https://doi.org/ 10.3390/molecules23102583.
  19. Dieffenbacher, A.,& Pocklington, W.D. (1992).Standard Methods for the Analysis of Oils, Fats and Derivatives, 1st Supplement to the 7th Edition (IUPAC Chemical Data), Wiley,  184 pages.
  20. Eid, E.M., & Shaltout, K.H. (2017). Seasonal allocation of carbohydrates between aboveand below-ground organs of Typha domingensis. Feddes Repertorium, 128, 1–10, https://doi.org/10.1002/fedr.201600004
  21. El-Amier, A. (2013). Spatial distribution and nutritive value of two Typha species in Egypt. Egyptian Journal of Botany, 53(1), 91-113.
  22. Elhaak, M.A., Mohsen, A.A., Hamada, E.A.M., & El-Gebaly, F.E. (2015). Biofuel production from phragmites australis (cav.) and Typha domingensis (Pers.) plants of Burullus Lake. Egyptian Journal of Experimental Biology, 11(2), 237–243.
  23. Farrokhzad, Y., Babaei, A., Yadollahi, A., Beyraghdar Kashkooli, A., & Mokhtassi-Bidgoli, A. (2022). In vitro rooting, plant growth, monosaccharide profile and anatomical analysis of Phalaenopsis regenerants under different regions of visible light. South African Journal of Botany, 149, 622-631. https://doi.org/10.1016/j.sajb.2022.06.039
  24. Foladvand, S., Sayad, G., Hemadi, K., & Moazed, H. (2014). Assessing changes in quality and quantity of entering stream to Hor-Al-Azim Wetland regarding Karkhe Dam construction. Journal of Irrigation Sciences and Engineering, (JISE), 36(4), 1-8. https://doi.org/1001.1.25885952.1392.36.4.1.8
  25. Fretts, A.M., Imamura, F., Marklund, M., Micha, R., Wu, J.H.Y., Murphy, R.A., Chien, K.L., McKnight, B., Tintle, N., Forouhi, N.G., Qureshi, W.T., Virtanen, J.K., Wong, K., Wood, A.C., Lankinen, M., Rajaobelina, K., Harris, T.B., Djoussé, L., Harris, B., Wareham, N.J., Steffen, L.M., Laakso,M., Veenstra, J., Samieri, C., Brouwer, I.A., Yu, C.I., Koulman, A., Steffen, B.T., Helmer, C., Sotoodehnia, N., Siscovick, D., Gudnason, V., InterAct Consortium; Wagenknecht, L., Voutilainen, S., Tsai, M.Y., Uusitupa, M., Kalsbeek, A., Berr, C., Mozaffarian, D., & Lemaitre, R.N. (2019). Associations of circulating very-long-chain saturated fatty acids and incident type 2 diabetes: a pooled analysis of prospective cohort studies. The American Journalof Clinical Nutrition, 1, 109(4), 1216-1223. https://doi.org/10.1093/ajcn/nqz005
  26. Fruet, A.C., Seito, L.N., Rall, V.L., & Di Stasi, LC. (2012). Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia) prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis. BMC Complementary and Alternative Medicine. https://doi.org/10.1186/1472-6882-12-62
  27. George, N., Andersson, A.A.M., Andersson, R., & Kamal-Eldin, A. (2020). Lignin is the main determinant of total dietary fiber differences between date fruit (Phoenix dactylifera) varieties.
  28. NFS Journal, 21, 16-21. https://doi.org/10.1016/j.nfs.2020.08.002.
  29. Gershuni, V.M. (2018). Saturated fat: Part of a healthy diet. Current NutritionReports, 7(3), 85-96. https://doi.org/10.1007/s13668-018-0238-x
  30. Ghorbani, Z., Amanipoor, H., & Battaleb-Looie, S. (2022). Water quality simulation of Dez River in Iran using QUAL2KW model. Geocarto International, 37(4), 1126-1138. https://doi.org/10.1080/10106049.2020.1762763
  31. Guo, Q., Liu, L., & Barkla, B.J. (2019). Membrane lipid remodeling in response to salinity. International Journal of MolecularSciences, 20, 4264. https://doi.org/3390/ijms20174264
  32. Guzmán-Maldonado, S.H., Osuna-García, J.A., & Herrera-González, J.A. (2017). Effect of locality and maturity on the fatty acid profile of avocado ‘Hass’ fruit. Revista mexicana de ciencias agrícolas8(19), 3885-3896.https://doi.org/10.29312/remexca.v0i19.657
  33. Hamdi, S.M.M., & Assadi, M. (2003). Flora of Iran No.42: Typhaceae, Research Institute of Forests and Rungelands, Tehran, Iran.
  34. Hassan, U.F., Hassan, H.F., Baba, H., & Suleiman, A.S. (2018). The feed quality status of whole Typha domingensis International Journal of Scientific & Engineering Research, 9(5), 1609-1617.
  35. He, M., & Ding, N. (2020). Plant unsaturated fatty acids: Multiple roles in stress response. Frontiers in Plant Science, 11, Article 562785, https://doi.org/10.3389/fpls.2020.562785
  36. Hellmuth, N. (2021). Edible plants of wetlands Cattail, Tule Typha domingensis. Flaar Mesoamerica,
  37. Ichihara, K., Kohsaka, C., Tomari, N., Yamamoto, Y., & Masumura, T. (2020). Determination of free fatty acids in plasma by gas chromatography. Analytical Biochemistry, 15, 603, 113810. https://doi.org/10.1016/j.ab.2020.113810
  38. (2000). Animal and vegetable fats and Oils–preparation of methyl esters of fatty acid / 5509 /ISO https://standards.iteh.ai/catalog/standards/sist/37abc0ea-3e75-4531-bb43-c6912f85a0c5/iso-5590-2000
  39. Jeandet, P., Formela-Luboińska, M., Labudda, M., & Morkunas, I. (2022). The role of sugars in plant responses to stress and their regulatory function during development. International Journal of MolecularSciences, 5, 23(9), 5161. https://doi.org/10.3390/ijms23095161
  40. John, M.O., Rufai, M.A., Sunday, A.J., Fernando, E., Richard, K., Eva, I., Maidala, A., Amos, M., Chana, M., Hannatu, C., & A, O.S. (2022). Cattail (Typha domingensis) silage improves feed intake, blood profile, economics of production, and growth performance of beef cattle. Tropical Animal Healthand Production, 12, 54(1), 48. https://doi.org/10.1007/s11250-022-03066-1
  41. Khalid, A., Algarni, A.S., Homeida, H.E., Sultana, S., Javed, S.A., Rehman, Z.U., Abdalla, H., Alhazmi, H.A., Albratty, M., & Abdalla, A.N. (2022). Phytochemical, Cytotoxic, and Antimicrobial Evaluation of Tribulus terrestrisL., Typha domingensis, and Ricinus communis L.: Scientific Evidences for Folkloric Uses. Evidence-Based Complementary and Alternative Medicine, 27, 6519712. https://doi.org/10.1155/2022/6519712
  42. Khider, T.O., Omer, S., & Taha, O. (2012). Alkaline pulping of Typha domingensis stems from Sudan. World Applied Sciences Journal, 16(3), 331-336.
  43. Labdelli, A., Tahirine, M., Foughalia, A., Zemour, K., Cerny, M., Adda, A., Simon, V., & Merah, O. (2022). Effect of ecotype and environment on oil content, fatty acid, and sterol composition of seed, kernel, and epicarp of the Atlas pistachio. Agronomy, 12(12), 3200. https://doi.org/10.3390/agronomy12123200
  44. Lacey, J.A., Aston, J.E., & Thompson, V.S. (2018). Wear properties of ash minerals in biomass. Perspective 6, article 119, https://doi.org/10.3389/fenrg.2018.00119
  45. Lemaitre, R.N., & King, I.B. (2022). Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Current Opinion in Lipidology, 1,33(1), 76-82. https://doi.org/10.1097/MOL
  46. Leray, C. (2020). Lipids and Health. Oilseeds and fats, Crops and Lipids, 27, 25. https://doi.org/10.1051/ocl/2020018
  47. Maryum, Z., Luqman, T., Nadeem, S, Khan, S.M.U.D., Wang, B., Ditta, A., & Khan, M.K.R. (2022). An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science, 13, 907937 https://doi.org/10.3389/fpls.2022.907937
  48. McCready, M.R., Guggols, J., Silviera, V., & Owens, S.H. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22, 1156-1158. https://doi.org/10.1021/ac60045a016
  49. Nasirian, H., & Salehzadeh, A. (2019). Effect of seasonality on the population density of wetland aquatic insects: A case study of the Hawr Al Azim and Shadegan wetlands, Iran. Vet World, 12(4), 584-592. https://doi.org/10.14202/vetworld.2019.584-592
  50. Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16, 12871-12890. https://doi.org/10.3390/ijms160612871
  51. Pandey, A., & Verma, R.K. (2018). Taxonomical and pharmacological status of Typha: A Review, Annals of Plant Sciences, 7(3), 2101-2106. https://doi.org/10.21746/aps.2018.7.3.2
  52. Pipoyan, D., Stepanyan, S., Stepanyan, S., Beglaryan, M., Costantini, L., Molinari, R., & Merendino, N. (2021). The effect of trans fatty acids on human health: Regulation and consumption patterns. Foods, 10(10), 2452. https://doi.org/10.3390/foods10102452
  53. Raygani, B., Goodarzi, F., Talebi, A., Talaeian Araghi, M., & Hashemi, H. (2020). Assessment of the probable impacts of land use changes on water quality in shadeghan wetland using remotely sensed data. Journal of Spatial Analysis Environmental Hazards, 7(2), 33-48. https://doi.org/29252/jsaeh.7.2.33
  54. Ruiz-Carreraa, V., Hernández-Piedraa, G., Arredondo-Vegab, B.O., & Sánchez, A.J. (2016). Fatty acids in leaf and seed of three emergent aquatic macrophytes. Revista Latinoamericana de Química, 44(1-3), 7-15.
  55. Sarker, U., Islam, M.T., & Oba, S. (2018). Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS One. 1;13(11), e0206388. https://doi.org/10.1371/journal.pone.0206388
  56. Shadhin, M., Rahman, M., Jayaraman, R., & Mann, D. (2021). Novel cattail fiber composites: converting waste biomass into reinforcement for composites. Bioresources and Bioprocessing, 8(1), 101. https://doi.org/10.1186/s40643-021-00453-8
  57. Teh, K.Y., Loh, S.H., Aziz, A., Takahashi, , Mohd Effendy, A.V., & Cha, T.S. (2021). Lipid accumulation patterns and role of different fatty acid types towards mitigating salinity fluctuations in Chlorella vulgarisScientific Reports, 11, 438. https://doi.org/10.1038/s41598-020-79950-3
  58. Uotila, P., Raus, T., Tomović, G., & Niketić, M. (2010). Typha domingensis (Typhaceae) new to Serbia. Botanica Serbica, 34(2), 111-114.
  59. Wu, S., Zhang, J., Li, C., Wang, F., Shi, L., Tao, M., Weng, B., Yan, B., Guo, Y., & Chen, Y. (2021). Characterization of potential cellulose fiber from cattail fiber: A study on micro/nano structure and other properties. International Journal of Biological Macromolecules, 193(A), 27-37. https://doi.org/10.1016/j.ijbiomac.2021.10.088
  60. Zhang, Y., van Geel, B., & Gosling, W.D. (2020). Typhaas a wetland food resource: evidence from the Tianluoshan site, Lower Yangtze Region, China. Vegetation History and Archaeobotany, 29, 51–60. https://doi.org/10.1007/s00334-019-00735-4
CAPTCHA Image